COMP 590-154:
Computer Architecture

Out-of-Order Execution and Register Rename

e “Trivial” Parallelism is limited

— What is trivial parallelism?
* In-order: sequential instructions do not have dependencies

* In all previous cases, all insns. executed with or after earlier insns.

— Superscalar execution quickly hits a ceiling due to deps.

|II

* So what is “non-trivial” parallelism? ...

ILP is @ measure of inter-dependencies between insns.

Average ILP = num. instruction / num. cyc required
codel: ILP=1

i.e. must execute serially

code?2: ILP =3

i.e. can execute at the same time

codel: rl<«—r2+1 code?2: rler2+1
\
r3«rl/17 r3«r9/17
r4 <—r0-r3 r4 <—r0-rl0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
addf £f0,f1,f2 |F D E+ E+ E+ W
mulf £2,£3,£2 F D d° d* E* E* E* E* E* W
subf £0,£f1,£4 F p* p* D E+ E+ E+ W

 What’s happening in cycle 47
— mulf stalls due to RAW hazard
e OK, this is a fundamental problem

— subf stalls due to pipeline hazard
* Why? subf can’t proceed into D because mulf is there
* That is the only reason, and it isn’t a fundamental one

e Why can’t subf goto D in cycle 4 and E+ in cycle 5?

ILP usually assumes

— Infinite resources
— Perfect fetch
— Unit-latency for all instructions

ILP is a property of the program dataflow

IPC is the “real” observed metric

— How many insns. are executed per cycle

ILP is an upper-bound on the attainable IPC
— Specific to a particular program

Dynamic scheduling

— Totally in the hardware
— Also called Out-of-Order execution (Oo0O)

Fetch many instructions into instruction window
— Use branch prediction to speculate past branches

Rename regs. to avoid false deps. (WAW and WAR)

Execute insns. as soon as possible
— As soon as deps. (regs and memory) are known

Today’s machines: 100+ insns. scheduling window

* Execute insns. in dataflow order

— Often similar but not the same as program order
* Use register renaming removes false deps.

e Scheduler identifies when to run insns.
— Wait for all deps. to be satisfied

Dynamic Renamed Dynamically
Instruction Instruction Scheduled

‘ Stream Stream Instructions
Static

Program

ol 5 i -

9
>
o
9]
<
v,
n

Out-of-order =
out of the original
sequential order

A:RI = Load 16[R2]

B:R3 = RI| + R4
C:R6 = Load 8[R9]
D:R5=R2-4
E:R7 = Load 20[R5]
F:R4 =R4 — |

G: BEQ R4,#0

¢ 1

| -wide 2-wide | -wide
In-Order In-Order Out-of-Order

9 9

E- : ©
" @
® ®0 ®

© © ®

© ©6 ©

g © 7 cycles
© 8 cycles

10 cycles

2-wide
Out-of-Order

® ©
20 @®
- ®©

TA
I(ﬂ

®

5 cycles

* In-order pipeline
— F: Fetch
— D: Decode
— X: Execute
— W: Writeback

regfile

DS
BP

* Alternative pipeline diagram

Down: insns
Across: pipeline stages

In boxes: cycles

Basically: stages <> cycles

— Convenient for out-of-order

Insn D X W
1df X(rl) ,f1l cl | c2 | c3
mulf £0,£f1,£f2| c3 | cd4+| c7
stf £2,Z(rl) c7 | c8 | c9
addi rl,4,rl c8 | ¢9 | cl0
1df X(rl) ,f1 | cl0| cll| cl2
mulf £0,f1,£f2| cl2|cl3+ cl6
stf £2,Z(rl) clé| cl7| cl8

* Trick: instruction buffer (a.k.a. instruction window)
— A bunch of registers for holding insns.

* Split D into two parts
— Accumulate decoded insns. in buffer in-order
— Buffer sends insns. down rest of pipeline out-of-order

* Dispatch (D): first part of decode
— Allocate slot in insn. buffer (if buffer is not full)
— In order: blocks younger insns.

* |Issue (S): second part of decode

— Send insns. from insn. buffer to execution units
— Out-of-order: doesn’t block younger insns.

BP

A

F-regfile

A

e “Scoreboarding”

— First 000, no register renaming

e “Tomasulo’s algorithm”

— 000 with register renaming

Execution v
Begins INT |
In-order

2. RAW Hazard
' 3.WAW Hazard
Riiseroade 4.WAR Hazard

Completion

v v
Issue stage needs to check:
m |. Structural Dependence

(]
Issue = send an instruction

to execution

e Scoreboard: a bit-array, 1-bit for each GPR

— |If the bit is not set: the register has valid data
— |If the bit is set: the register has stale data

i.e., some outstanding instruction is going to change it

* |ssuein Order: RD < Fn (RS, RT)
— If SB[RS] or SB[RT] is set = RAW, stall
— If SB[RD] is set = WAW, stall
— Else, dispatch to FU (Fn) and set SB[RD]

 Complete out-of-order
— Update GPR[RD], clear SB[RD]

Read-After-Write Write-After-Read Write-After-Write

A:RI —-\R2+R3 A:RI =}3/R4 A:RI =sR2 + R3
B:R4 = RI * R4 B:R3 = R2 * R4 B: Rl =R3 * R4

 WAR dependencies are from reusing registers

A:RI;RB/R4 A:Rl‘x— R3 /R4
B:R3 = R2 * R4 B: R5 = R2 * R4

« WAW dependencies are also from reusing registers

A:RN=R2 + R3 A:R5~ R2 +R3
B:RI"= R3 * R4 B:RI"= R3 * R4

Register renaming (in hardware)

— “Change” register names to eliminate WAR/WAW hazards
— Arch. registers (r1,f0...) are names, not storage locations
— Can have more locations than names

— Can have multiple active versions of same name

How does it work?
— Map-table: maps names to most recent locations

— On a write: allocate new location, note in map-table
— On a read: find location of most recent write via map-table

e Anti (

* Example

) and output (WAW) deps. are false

— Dep. is on name/location, not on data

— Given infinite registers, WAR/WAW don’t arise

— Renaming removes WAR/WAW, but leaves RAW intact

— Names: rl1,r2,r3 Locations: p1,p2,p3,p4,p5,p6,p7

— Original: r1—p1l, r2—p2, r3—p3, p4—p7 are “free”

Renamed insns.

MapTable FreelList Original insns.
rl' r2' r3(
pl |p2 |p3 p4,p5,p6,p7 add r2,r3}1

add p2,p3A,/E4
~ | ~

e Anti (

* Example

) and output (WAW) deps. are false
— Dep. is on name/location, not on data
— Given infinite registers, WAR/WAW don’t arise

— Renaming removes WAR/WAW, but leaves RAW intact

— Names: rl1,r2,r3 Locations: p1,p2,p3,p4,p5,p6,p7
— Original: r1—p1l, r2—p2, r3—p3, p4—p7 are “free”

Renamed insns.

MapTable FreelList Original insns.
rl' r2' r3(

pl |p2 |p3 p4,p5,p6,p7 add r2,r3,rl
p4 |p2 |p3 pS5,p6,p7 sub r2,r1,/r3
p4 |p2 |p5 p6,p7 mul r2 3‘,/1:'31

p4 PZ PG p7 div rl,4,rl

add p2,p3,p4
sub p2,p 5
mul p2 5756
div p4,4,p7

Reservation Stations (RS): instruction buffer

Common data bus (CDB): broadcasts results to RS
Register renaming: removes WAR/WAW hazards
Bypassing (not shown here to make example simpler)

Reservation Stations (RS)

— FU, busy, op, R: destination register name

— T: destination register tag (RS# of this RS)

— T1,T2: source register tag (RS# of RS that will output value)
— V1,V2: source register values

Map Table (a.k.a., RAT)
— T: tag (RS#) that will write this register

Common Data Bus (CDB)
— Broadcasts <RS#, value> of completed insns.

Valid tags indicate the RS# that will produce result

Map Table ﬁ

\ 4

CDB.T

Fetched
insns

»
»

VVYVYYVY

Reservation Statlons

CDB.V

* New pipeline structure: F, D, S, X, W
— D (dispatch)
e Structural hazard ? stall : allocate RS entry
— S (issue)
 RAW hazard ? wait (monitor CDB) : go to execute
— W (writeback)
* Write register, free RS entry

W and RAW-dependent S in same cycle
* W and structural-dependent D in same cycle

Map Table ﬁ

\ 4

CDB.V

Fetched R Op
insns == e

»
»

Reservation Statlons

* Allocate RS entry (structural stall if busy)

— Input register ready ? read value into RS : read tag into RS
— Set register status (i.e., rename) for output register

Map Table ﬁ

\ 4

Fetched
insns

»
»

Reservation Statlons

CDB.T

VVYVYYVY

e Wait for RAW hazards

— Read register values from RS

v

CDB.V

Map Table ﬁ

\ 4

CDB.T

Fetched
insns

»
»

VVYVYYVY

Reservation Stat‘ons

CDB.V

Map Table ﬁ

Vv v

CDB.V

Fetched
insns

»
»

VVYYVY

Reservation Statlons

* Wait for structural (CDB) hazards

— Output Reg tag still matches? clear, write result to register
— CDB broadcast to RS: tag match ? clear tag, copy value

Map Table ﬁ

\ 4

CDB.T
CDB.V

Fetched
insns

[
»

VVYVY VY

Reservation Statlons

e Value copies in RS (V1, V2)
* Insn. stores correct input values in its own RS entry
* “Free list” is implicit (allocate/deallocate as part of RS)

Insn Status Map Table CDB
Insn D X | W Reg |T T P
1df X(rl),fl £0

mulf £0,fl,f2 £l |
stf £2,%(rl) £2

addi rl1l,4,rl rl

1df X(rl),fl

mulf £0,fl,£2

stf £2,%(rl)

Reservation Stations

T [FU |busy |op T1 T2 V1 V2

1 |(ALU |no

2 |LD no

3 |ST no

4 |FP1 |no

5 |FP2 [no

Insn Status Map Table CDB
Insn D| S| X | W Reg [T T P
1df X(rl),fl | cl £0

mulf £0,fl,£2 f1 |RS#2 |
stf £2,Z(rl) £2

addi rl1l,4,rl rl

1df X(rl),fl

mulf £0,fl,£2

stf £2,Z(rl)

Reservation Stations

T [FU |busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |LD yes |(1df [f1 |- = = [r1l] |allocate
3 |ST no

4 |(FPl1 |no

5 |FP2 [no

Insn Status Map Table CDB
Insn D| S| X | W Reg [T T P
1df X(rl),fl | cl| c2 £0

mulf £0,fl,f2| c2 f1l |RS#2 |
stf £2,Z(rl) £2 |RS#4

addi rl1l,4,rl rl

1df X(rl),fl

mulf £0,fl,£2

stf £2,Z(rl)

Reservation Stations

T [FU |busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |1LD yes |1df (f1 |- - - [rl]

3 |ST no

4 |FPl |yes |mulf |f2 |- RS#2 |[£0] |- allocate
5 |FP2 [no

Insn Status Map Table CDB
Insn D| S| X | W Reg [T T P
1df X(rl) ,£f1 cl| c2| c3 £f0

mulf £0,fl,f2| c2 f1l |RS#2 |
stf £2,Z(rl) c3 £f2 [RS#4

addi rl1l,4,rl rl

1df X(rl), fl

mulf £0,fl,£2

stf £2,Z(rl)

Reservation Stations

T [FU |busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |1LD yes |1df (f1 |- - - [rl]

3 |ST yes |[stf |- RS#4 |- - [r1l] |allocate
4 |FPl |yes |mulf (£2 |- RS#2 [[£0] |-

5 |FP2 [no

Insn Status Map Table CDB

Insn D| S| X | W Reg [T T P

1df X(rl) ,f1 cl| c2| c3| c4 £0 RS#2 [[£f1]

mulf £0,fl,f2| c2 | c4 f1 |RS#2 < |

stf £2,Z(rl) c3 £f2 [RS#4

addi rl,4,rl c4 rl |RS#1

1df X(rl), fl

mulf £0,£1,£2 1d£ finished (W)
stf £2,2(x1) — clear £1 RegStatus
Reservation Stations CDB broadcast
T [FU |busy |op R T1 T2 V1 V2

1 |ALU |yes |addi [rl |- - [r1l] |- allocate

2 |LD no free

3 [ST |yes |stf |- RS#4 (- v |- [rX]

4 |FP1l |yes |mulf |f2 |- RS#2 |[£f0] |CDB.V|RS#2 ready —

5 |FP2 |no grab CDB value

Insn Status Map Table CDB
Insn D| S| X | W Reg [T T P
1df X(rl) ,£f1 cl|{ c2| c3| c4 £f0

mulf £0,fl,f2| c2| c4 | c5 f1 |RS#2 |
stf £2,Z(rl) c3 £f2 [RS#4

addi rl,4,rl cd | c5 rl |RS#1

1df X(rl) ,£f1 c5

mulf £0,fl,f2

stf £2,2Z(rl)

Reservation Stations

T [FU |busy |op R T1 T2 V1 V2

1 |ALU |yes |addi |rl |- - [r1l] |-

2 |1LD yes |(1df [(f1 |- RS#1 |- - allocate
3 [ST |yes |stf |- RS#4 |- - [rl]

4 |FP1l |yes [mulf (f2 |- - [£0] |[[£1]

5 |FP2 [no

Insn Status Map Table CDB

Insn D| S| X | W Reg [T T P
1df X(rl) ,£f1 cl|{ c2| c3| c4 £f0

mulf £0,fl,f2| c2 | c4 |c5+ fl |RS#2 |

stf £2,Z(rl) c3 £f2 |RS#4RS#5|«

addi rl,4,rl cd| c5| c6 rl |RS#1

1df X(rl),fl | c5 no stall on WAW: scoreboard
mulf £0,£fl,£f2| c6 overwrites £2 RegStatus

stf £2,Z(rl) anyone who needs old £2 tag has it
Reservation Stations

T |FU |busy |op R T1 T2 V1 V2

1 |ALU |yes |addi |rl |- - [r1l] |-

2 |LD |yes |1df |[f1 |- RS#1 |- -

3 [ST |yes |stf |- RS#4 |- - [rl]

4 |FP1l |yes [mulf (f2 |- - [£0] |[[£1]

5 |FP2 |yes |mulf [f2 |- RS#2 |[£0] |- allocate

Insn Status Map Table CDB

Insn D| S| X | W Reg [T T P

1df X(rl) ,f1 cl| c2| c3| c4 £0 RS#1 ([rl1]

mulf £0,fl,f2| c2 | c4 |c5+ fl |RS#2 |

stf £2,Z(rl) c3 £f2 ([RS#5

addi rl,4,rl cd| c5| c6| c7 rl |RS#1

1df X(rl),fl | c5 | c7 no W wait on WAR: map table ensured
mulf £0,£f1,£f2| c6 anyone who needs old r1 has RS copy
stf £2,2(rl) D stall on store RS: structural (no space)
Reservation Stations addi finished (W)

T [FU [ousylop R |11 |12 ERE clear r1 RegStatus
1 |ALU |no CDB broadcast

2 |LD yes |1ldf |f1 |- RS#1 |- CDB.V|RS#1 ready —>

3 |ST yes [stf |- RS#4 |- - [r1] |grab CDB value

4 |FP1l |yes [mulf (f2 |- - [£0] |[[£1]

5 |FP2 |yes [mulf f2 |- RS#2 |[[£0] |-

Insn Status Map Table CDB

Insn D| S| X | W Reg |T T P
1df X(rl) ,f1 cl| c2| c3| c4 £0 RS#4 [[£2]
mulf £0,fl,f2| c2 | c4 |c5+| c8 f1 |RS#2 |

stf £2,Z(rl) c3| c8 £2 |RS#5

addi rl,4,rl cd| c5| c6| c7 rl

1df X(rl) ,f1l | c5| c7 | c8 mulf finished (W), £2 already
mulf £0,f1,£f2| c6 overwritten by 2nd mul f (RS#5)
stf £2,Z(rl) CDB broadcast

Reservation Stations

T |FU busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |LD yes |1df (f1 |- - - [rl]

3 |ST yes |[stf |- RS#4 |- CDB.V|[rl] |RS#4 ready —
4 |FP1 [no grab CDB value
5 |FP2 |yes |mulf f2 |- RS#2 [[£0] |-

Insn Status Map Table CDB

Insn D| S| X | W Reg |T T P
1df X(rl),fl | cl| c2| c3| c4 £0 RS#2 |[f1]

mulf £0,fl1,f2| c2 | c4 |c5+| c8 f1 |RS#2 |

stf £2,Z(rl) c3| c8| c9 £f2 ([RS#5

addi rl,4,rl cd| c5| c6| c7 rl

1df X(rl) ,f1 | c5| c7| c8 | c9 | 2nd 1df finished (W)

mulf £0,£fl1,f2| c6 | c9 clear £1 RegStatus

stf £2,Z(rl) CDB broadcast

Reservation Stations

T |FU |busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |LD no

3 |[ST yes |[stf |- - - [£2] |[[rl]

4 |[FP1 |no RS#2 ready —

5 |FP2 |yes [mulf f2 |- RS#2 |[£0] |CDB.V grab CDB value

Insn Status Map Table CDB

Insn D| S| X | W Reg [T T P
1df X(rl) ,£f1 cl|{ c2| c3| c4 £f0

mulf £0,fl1,f2| c2 | c4 |c5+| c8 £1 |

stf £2,Z(rl) c3| c8| c9|cl0 £f2 ([RS#5

addi rl,4,rl cd| c5| c6| c7 rl

1df X(rl) ,£f1 cS5 | c7| c8| c9

mulf £0,fl1,f2| c6| c9|cl0 st£ finished (W)

stf £2,%Z(rl) |c10 no output register > no CDB broadcast
Reservation Stations

T |FU |busy |op R T1 T2 V1 V2

1 |(ALU |no

2 |LD no

3 [ST |yes |stf |- [RS#5 |- - [rl] |free — allocate
4 |(FPl1 |no

5 |FP2 |yes mulf f2 |- = [£0] |[[£1]

* Dynamic scheduling and multi-issue are orthogonal

— N: superscalar width (hnumber of parallel operations)
— W: window size (hnumber of reservation stations)

* What is needed for an N-by-W Tomasulo?
— RS: N tag/value write (D), N value read (S), 2N tag cmp (W)
— Select logic: W—N priority encoder (S)
— MT: 2N read (D), N write (D)
— RF: 2N read (D), N write (W)
— CDB: N (W)

