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Generic Instruction Cycle
• Steps in processing an instruction:
– Instruction Fetch (IF_STEP)
– Instruction Decode (ID_STEP)
– Operand Fetch (OF_STEP)
– Execute (EX_STEP)
– Result Store or Write Back (RS_STEP)

• Actions per instruction at each stage given by ISA

• μArch determines how HW implements the steps



Datapath vs. Control Logic
• Datapath is HW components and connections
– Determines the static structure of processor

• Control logic controls data flow in datapath
– Control is determined by

• Instruction words
• State of the processor
• Execution results at each stage



Generic Datapath Components
• Main components

– Instruction Cache
– Data Cache
– Register File
– Functional Units (ALU, Floating Point Unit, Memory Unit, …)
– Pipeline Registers

• Auxiliary Components (in advanced processors)
– Reservation Stations
– Reorder Buffer
– Branch Predictor
– Prefetchers
– …

• Lots of glue logic (often multiplexors) to glue these together



Single-Instruction Datapath

• Process one instruction at a time

• Single-cycle control: hardwired
– Low CPI (1)
– Long clock period (to accommodate slowest instruction)

• Multi-cycle control: typically micro-programmed
– Short clock period
– High CPI

• Can we have both low CPI and short clock period?
– Not if datapath executes only one instruction at a time
– No good way to make a single instruction go faster

Single-cycle

Multi-cycle

ins0.(fetch,dec,ex,mem,wb) ins1.(fetch,dec,ex,mem,wb)

ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time



Pipelined Datapath

• Start with multi-cycle design
• When insn0 goes from stage 1 to stage 2

… insn1 starts stage 1
• Each instruction passes through all stages

… but instructions enter and leave at faster rate

Pipeline can have as many insns in flight as there are stages

Multi-cycle ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time
Pipelined

ins0.(mem,wb)ins0.(dec,ex)ins0.fetch

ins1.(dec,ex)ins1.fetch ins1.(mem,wb)

ins2.(dec,ex)ins2.fetch ins2.(mem,wb)

Style Ideal CPI Cycle Time (1/freq)
Single-cycle 1 Long
Multi-cycle > 1 Short
Pipelined 1 Short



Pipeline Examples
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Stage 1: Fetch
• Fetch instruction from instruction cache
– Use PC to index instruction cache
– Increment PC (assume no branches for now)

• Write state to the pipeline register (IF/ID)
– The next stage will read this pipeline register



Stage 1: Fetch Diagram
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Stage 2: Decode
• Decodes opcode bits
– Set up Control signals for later stages

• Read input operands from register file
– Specified by decoded instruction bits

• Write state to the pipeline register (ID/EX)
– Opcode
– Register contents, immediate operand
– PC+1 (even though decode didn’t use it)
– Control signals (from insn) for opcode and destReg



Stage 2: Decode Diagram
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Stage 3: Execute
• Perform ALU operations
– Calculate result of instruction

• Control signals select operation
• Contents of regA used as one input
• Either regB or constant offset (imm from insn) used as second input

– Calculate PC-relative branch target
• PC+1+(constant offset)

• Write state to the pipeline register (EX/Mem)
– ALU result, contents of regB, and PC+1+offset
– Control signals (from insn) for opcode and destReg



Stage 3: Execute Diagram
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Stage 4: Memory
• Perform data cache access
– ALU result contains address for LD or ST
– Opcode bits control R/W and enable signals

• Write state to the pipeline register (Mem/WB)
– ALU result and Loaded data
– Control signals (from insn) for opcode and destReg



Stage 4: Memory Diagram
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Stage 5: Write-back
• Writing result to register file (if required)
– Write Loaded data to destReg for LD 
– Write ALU result to destReg for ALU insn
– Opcode bits control register write enable signal



Stage 5: Write-back Diagram
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Putting It All Together
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Pipelining Idealism
• Uniform Sub-operations

– Operation can partitioned into uniform-latency sub-ops

• Repetition of Identical Operations
– Same ops performed on many different inputs

• Independent Operations
– All ops are mutually independent



Pipeline Realism
• Uniform Sub-operations … NOT!

– Balance pipeline stages
• Stage quantization to yield balanced stages
• Minimize internal fragmentation (left-over time near end of cycle)

• Repetition of Identical Operations … NOT!
– Unifying instruction types

• Coalescing instruction types into one “multi-function” pipe
• Minimize external fragmentation (idle stages to match length)

• Independent Operations … NOT!
– Resolve data and resource hazards

• Inter-instruction dependency detection and resolution

Pipelining is expensive



The Generic Instruction Pipeline

Instruction Fetch

Instruction Decode

Operand Fetch

Instruction  Execute

Write-back

IF
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Balancing Pipeline Stages

Can we do better?

TIF= 6 units

TID= 2 units

TID= 9 units

TEX= 5 units

TOS= 9 units

Without pipelining
Tcyc»TIF+TID+TOF+TEX+TOS

= 31

Pipelined
Tcyc » max{TIF, TID, TOF, TEX, TOS}

= 9

Speedup = 31 / 9 = 3.44

IF

ID

OF

EX

WB



Balancing Pipeline Stages (1/2)
• Two methods for stage quantization
– Divide sub-ops into smaller pieces
– Merge multiple sub-ops into one

• Recent/Current trends
– Deeper pipelines (more and more stages)
– Pipelining of memory accesses
– Multiple different pipelines/sub-pipelines



Balancing Pipeline Stages (2/2)
Coarser-Grained Machine Cycle: 

4 machine cyc / instruction
Finer-Grained Machine Cycle: 
11 machine cyc /instruction

TIF&ID= 8 units

TOF= 9 units

TEX= 5 units

TOS= 9 units

IF
ID

OF

WB

EX
# stages = 11
Tcyc= 3 units

IF

IF
ID

OF

OF

OF

EX
EX

WB

WB

WB

# stages = 4
Tcyc= 9 units



Pipeline Examples
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Instruction Dependencies (1/2)
• Data Dependence
– Read-After-Write (RAW) (the only true dependence)

• Read must wait until earlier write finishes
– Anti-Dependence (WAR)

• Write must wait until earlier read finishes (avoid clobbering)

– Output Dependence (WAW)
• Earlier write can’t overwrite later write

• Control Dependence (a.k.a. Procedural Dependence)
– Branch condition must execute before branch target
– Instructions after branch cannot run before branch



Instruction Dependencies (1/2)

Real code has lots of dependencies

# for ( ; (j < high) && (array[j] < array[low]); ++j);

bge j,    high,  L2
mul $15,    j,       4
addu $24,    array, $15
lw $25,    0($24)
mul $13,    low,   4
addu $14,    array, $13
lw $15,    0($14)
bge $25,    $15,  L2

L1:
addu j,     j,       1
. . .

L2:
addu $11,  $11, -1
. . .

From
Quicksort:



Hardware Dependency Analysis
• Processor must handle
– Register Data Dependencies (same register)

• RAW, WAW, WAR
– Memory Data Dependencies (same address)

• RAW, WAW, WAR

– Control Dependencies



Pipeline Terminology
• Pipeline Hazards

– Potential violations of program dependencies
• Due to multiple in-flight instructions

– Must ensure program dependencies are not violated

• Hazard Resolution
– Static method: compiler guarantees correctness

• By inserting No-Ops or independent insns between dependent insns
– Dynamic method: hardware checks at runtime

• Two basic techniques: Stall (costs perf.), Forward (costs hw)

• Pipeline Interlock
– Hardware mechanism for dynamic hazard resolution
– Must detect and enforce dependencies at runtime



Pipeline: Steady State

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Instj

Instj+1
Instj+2
Instj+3
Instj+4



Data Hazards
• Necessary conditions:
– WAR: write stage earlier than read stage

• Is this possible in IF-ID-RD-EX-MEM-WB?

– WAW: write stage earlier than write stage
• Is this possible in IF-ID-RD-EX-MEM-WB?

– RAW: read stage earlier than write stage
• Is this possible in IF-ID-RD-EX-MEM-WB?

• If conditions not met, no need to resolve

• Check for both register and memory



Pipeline: Data Hazard

• Only RAW in our case

• How to detect?
– Compare read register specifiers for newer instructions 

with write register specifiers for older instructions

t0 t1 t2 t3 t4 t5

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

Instj

Instj+1
Instj+2
Instj+3
Instj+4



Option 1: Stall on Data Hazard

• Instructions in IF and ID stay
• IF/ID pipeline latch not updated
• Send no-op down pipeline (called a bubble)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID Stalled in RD ALU MEM WB

IF Stalled in ID RD ALU MEM WB

Stalled in IF ID RD ALU MEM

IF ID RD ALU

t0 t1 t2 t3 t4 t5

RD

ID

IF

IF ID RD

IF ID

IF

Instj

Instj+1
Instj+2
Instj+3
Instj+4



Option 2: Forwarding Paths (1/3)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Many possible paths
Instj

Instj+1
Instj+2
Instj+3
Instj+4

MEM ALU Requires stalling even with forwarding paths



Option 2: Forwarding Paths (2/3)

ALU

MEM

WB

IF

src1

src2

dest
ID

Register File



Option 2: Forwarding Paths (3/3)

Deeper pipelines in 
general require additional 

forwarding paths

IF
Register File

src1

src2

ALU

MEM

dest

=
=

=
=

WB

=
=

ID



Pipeline: Control Hazard
t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

• Note: The target of Insti+1 is available at the end of the ALU 
stage, but it takes one more cycle (MEM) to be written to the 
PC register



Option 1: Stall on Control Hazard

• Stop fetching until branch outcome is known
– Send no-ops down the pipe

• Easy to implement
• Performs poorly

– ~1 of 6 instructions are branches
– Each branch takes 4 cycles
– CPI = 1 + 4 x 1/6 = 1.67 (lower bound)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

Stalled in IF



Option 2: Prediction for Control Hazards

• Predict branch not taken
• Send sequential instructions down pipeline
• Must stop memory and RF writes
• Kill instructions later if incorrect; we would know at the end of ALU
• Fetch from branch target

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU nop nop

IF ID RD nop nop

IF ID nop nop

IF ID RD

IF ID

IF

nop

nop nop

ALU nop

RD ALU

ID RD

nop

nop

nop

New Insti+2

New Insti+3

New Insti+4

Speculative State Cleared

Fetch Resteered



Option 3: Delay Slots for Control Hazards

• Another option: delayed branches

– # of delay slots (ds) : stages between IF and where the 

branch is resolved

• 3 in our example

– Always execute following ds instructions

– Put useful instruction there, otherwise no-op

• Losing popularity

– Just a stopgap (one cycle, one instruction)

– Superscalar processors (later)

• Delay slot just gets in the way (special case)

Legacy from old RISC ISAs



Going Beyond Scalar
• Scalar pipeline limited to CPI ≥ 1.0
– Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
– Superscalar means executing multiple insns in parallel



Architectures for Instruction Parallelism
• Scalar pipeline (baseline)
– Instruction overlap parallelism = D
– Operation Latency = 1
– Peak IPC = 1.0
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D different instructions overlapped



Superscalar Machine
• Superscalar (pipelined) Execution
– Instruction parallelism = D x N
– Operation Latency = 1
– Peak IPC = N per cycle
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N

D x N different instructions overlapped



Superscalar Example: Pentium
Prefetch

Decode1

Decode2 Decode2

Execute Execute

WritebackWriteback

4× 32-byte buffers

Decode up to 2 insts

Read operands, Addr comp

Asymmetric pipes

u-pipe v-pipe
shift

rotate
some FP

jmp, jcc,
call,
fxch

both
mov, lea,

simple ALU,
push/pop
test/cmp



Pentium Hazards & Stalls
• “Pairing Rules” (when can’t two insns exec?)

– Read/flow dependence
• mov eax, 8
• mov [ebp], eax

– Output dependence
• mov eax, 8
• mov eax, [ebp]

– Partial register stalls
• mov al, 1
• mov ah, 0

– Function unit rules
• Some instructions can never be paired

– MUL, DIV, PUSHA, MOVS, some FP



Limitations of In-Order Pipelines
• If the machine parallelism is increased 
– … dependencies reduce performance
– CPI of in-order pipelines degrades sharply

• As N approaches avg. distance between dependent instructions
• Forwarding is no longer effective

– Must stall often

In-order pipelines are rarely full



The In-Order N-Instruction Limit
• On average, parent-child separation is about 5 insn
– (Franklin and Sohi ’92)

Reasonable in-order superscalar is effectively N=2

Ex. Superscalar degree N = 4

Any dependency
between these
instructions will
cause a stall

Dependent insn
must be N = 4

instructions away

Average of 5 means there are many 
cases when the separation is < 4… 

each of these limits parallelism


