
COMP 590-154:
Computer Architecture

Core Pipelining

Generic Instruction Cycle
• Steps in processing an instruction:
– Instruction Fetch (IF_STEP)
– Instruction Decode (ID_STEP)
– Operand Fetch (OF_STEP)
– Execute (EX_STEP)
– Result Store or Write Back (RS_STEP)

• Actions per instruction at each stage given by ISA

• μArch determines how HW implements the steps

Datapath vs. Control Logic
• Datapath is HW components and connections
– Determines the static structure of processor

• Control logic controls data flow in datapath
– Control is determined by

• Instruction words
• State of the processor
• Execution results at each stage

Generic Datapath Components
• Main components

– Instruction Cache
– Data Cache
– Register File
– Functional Units (ALU, Floating Point Unit, Memory Unit, …)
– Pipeline Registers

• Auxiliary Components (in advanced processors)
– Reservation Stations
– Reorder Buffer
– Branch Predictor
– Prefetchers
– …

• Lots of glue logic (often multiplexors) to glue these together

Single-Instruction Datapath

• Process one instruction at a time

• Single-cycle control: hardwired
– Low CPI (1)
– Long clock period (to accommodate slowest instruction)

• Multi-cycle control: typically micro-programmed
– Short clock period
– High CPI

• Can we have both low CPI and short clock period?
– Not if datapath executes only one instruction at a time
– No good way to make a single instruction go faster

Single-cycle

Multi-cycle

ins0.(fetch,dec,ex,mem,wb) ins1.(fetch,dec,ex,mem,wb)

ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time

Pipelined Datapath

• Start with multi-cycle design
• When insn0 goes from stage 1 to stage 2

… insn1 starts stage 1
• Each instruction passes through all stages

… but instructions enter and leave at faster rate

Pipeline can have as many insns in flight as there are stages

Multi-cycle ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time
Pipelined

ins0.(mem,wb)ins0.(dec,ex)ins0.fetch

ins1.(dec,ex)ins1.fetch ins1.(mem,wb)

ins2.(dec,ex)ins2.fetch ins2.(mem,wb)

Style Ideal CPI Cycle Time (1/freq)
Single-cycle 1 Long
Multi-cycle > 1 Short
Pipelined 1 Short

Pipeline Examples

Stage delay = !
Bandwidth = ~(⁄% &)

Stage delay = ⁄& (
Bandwidth = ~(⁄(&)

Stage delay = ⁄&)
Bandwidth = ~(⁄) &)

address hit?

=
=
=
=

Increases throughput at the expense of latency

address hit?
=
=
=
=

address hit?

=
=
=
=

Write-Back (WB)

Memory
(MEM)

Execute
(EX)

Inst. Decode &
Register Read

(ID)

5-Stage MIPS Datapath

Inst. Fetch
(IF)

I-cache

Reg
File

PC

+1

D-cache
ALU

RS_STEPIF_STEP ID_STEP OF_STEP EX_STEP

Stage 1: Fetch
• Fetch instruction from instruction cache
– Use PC to index instruction cache
– Increment PC (assume no branches for now)

• Write state to the pipeline register (IF/ID)
– The next stage will read this pipeline register

Stage 1: Fetch Diagram

In
st

ru
ct

io
n

bi
ts

IF / ID
Pipeline register

PC

Instruction
Cache

en

en

1

+

M
U
X

PC
 +

 1

D
ec

od
e

target

Stage 2: Decode
• Decodes opcode bits
– Set up Control signals for later stages

• Read input operands from register file
– Specified by decoded instruction bits

• Write state to the pipeline register (ID/EX)
– Opcode
– Register contents, immediate operand
– PC+1 (even though decode didn’t use it)
– Control signals (from insn) for opcode and destReg

Stage 2: Decode Diagram

ID / EX
Pipeline register

re
gA

co
nt

en
ts

re
gB

co
nt

en
tsRegister File

regA
regB

en

In
st

ru
ct

io
n

bi
ts

IF / ID
Pipeline register

PC
 +

 1

PC
 +

 1
C

on
tr

ol
Si

gn
al

s/
im

m

Fe
tc

h

Ex
ec

ut
e

destReg

data

target

Stage 3: Execute
• Perform ALU operations
– Calculate result of instruction

• Control signals select operation
• Contents of regA used as one input
• Either regB or constant offset (imm from insn) used as second input

– Calculate PC-relative branch target
• PC+1+(constant offset)

• Write state to the pipeline register (EX/Mem)
– ALU result, contents of regB, and PC+1+offset
– Control signals (from insn) for opcode and destReg

Stage 3: Execute Diagram

ID / EX
Pipeline register

re
gA

co
nt

en
ts

re
gB

co
nt

en
ts

EX/Mem
Pipeline register

PC
 +

 1
C

on
tr

ol
Si

gn
al

s/
im

m

C
on

tr
ol

Si
gn

al
s

PC
+1

+o
ffs

et

+

re
gB

co
nt

en
tsD
ec

od
e

M
em

or
y

destReg
data

target

A
L
UM

U
X

A
LU

re
su

lt

Stage 4: Memory
• Perform data cache access
– ALU result contains address for LD or ST
– Opcode bits control R/W and enable signals

• Write state to the pipeline register (Mem/WB)
– ALU result and Loaded data
– Control signals (from insn) for opcode and destReg

Stage 4: Memory Diagram

A
LU

re
su

lt

Mem/WB
Pipeline register

A
LU

re
su

lt

EX/Mem
Pipeline register

C
on

tr
ol

si
gn

al
s

PC
+1

+o
ffs

et
re

gB
co

nt
en

ts

Lo
ad

ed
da

ta

Data Cache

en R/W

in_addr

in_data

C
on

tr
ol

si
gn

al
s

Ex
ec

ut
e

W
ri

te
-b

ac
k

destReg
data

target

Stage 5: Write-back
• Writing result to register file (if required)
– Write Loaded data to destReg for LD
– Write ALU result to destReg for ALU insn
– Opcode bits control register write enable signal

Stage 5: Write-back Diagram
A

LU
re

su
lt

Mem/WB
Pipeline register

C
on

tr
ol

si
gn

al
s

Lo
ad

ed
da

ta

M
U
X

data

destReg
M
U
X

M
em

or
y

Putting It All Together

PC Inst
Cache

Register
File

M
U
X

A
L
U

1

Data
Cache

+
+

M
U
X

IF/ID ID/EX EX/Mem Mem/WB

M
U
X C

on
tr
ol

si
gn
al
s/
im
m

valB

valA

PC+1PC+1
target

ALU
result

C
on
tr
ol

si
gn
al
s

valB

ALU
result

mdata

eq?instruction

regA
regB

data
dest

M
U
X

data
dest

C
on
tr
ol

si
gn
al
s

Pipelining Idealism
• Uniform Sub-operations

– Operation can partitioned into uniform-latency sub-ops

• Repetition of Identical Operations
– Same ops performed on many different inputs

• Independent Operations
– All ops are mutually independent

Pipeline Realism
• Uniform Sub-operations … NOT!

– Balance pipeline stages
• Stage quantization to yield balanced stages
• Minimize internal fragmentation (left-over time near end of cycle)

• Repetition of Identical Operations … NOT!
– Unifying instruction types

• Coalescing instruction types into one “multi-function” pipe
• Minimize external fragmentation (idle stages to match length)

• Independent Operations … NOT!
– Resolve data and resource hazards

• Inter-instruction dependency detection and resolution

Pipelining is expensive

The Generic Instruction Pipeline

Instruction Fetch

Instruction Decode

Operand Fetch

Instruction Execute

Write-back

IF

ID

OF

EX

WB

Balancing Pipeline Stages

Can we do better?

TIF= 6 units

TID= 2 units

TID= 9 units

TEX= 5 units

TOS= 9 units

Without pipelining
Tcyc»TIF+TID+TOF+TEX+TOS

= 31

Pipelined
Tcyc » max{TIF, TID, TOF, TEX, TOS}

= 9

Speedup = 31 / 9 = 3.44

IF

ID

OF

EX

WB

Balancing Pipeline Stages (1/2)
• Two methods for stage quantization
– Divide sub-ops into smaller pieces
– Merge multiple sub-ops into one

• Recent/Current trends
– Deeper pipelines (more and more stages)
– Pipelining of memory accesses
– Multiple different pipelines/sub-pipelines

Balancing Pipeline Stages (2/2)
Coarser-Grained Machine Cycle:

4 machine cyc / instruction
Finer-Grained Machine Cycle:
11 machine cyc /instruction

TIF&ID= 8 units

TOF= 9 units

TEX= 5 units

TOS= 9 units

IF
ID

OF

WB

EX
stages = 11
Tcyc= 3 units

IF

IF
ID

OF

OF

OF

EX
EX

WB

WB

WB

stages = 4
Tcyc= 9 units

Pipeline Examples

IF

RD

ALU

MEM

WB

IF_STEP

ID_STEP

OF_STEP

EX_STEP

RS_STEP

PC GEN

Cache Read

Cache Read

Decode

Read REG

Addr GEN

Cache Read

Cache Read

EX 1

EX 2

Check Result

Write Result

MIPS R2000/R3000

AMDAHL 470V/7

IF_STEP

ID_STEP

OF_STEP

EX_STEP

RS_STEP

Instruction Dependencies (1/2)
• Data Dependence
– Read-After-Write (RAW) (the only true dependence)

• Read must wait until earlier write finishes
– Anti-Dependence (WAR)

• Write must wait until earlier read finishes (avoid clobbering)

– Output Dependence (WAW)
• Earlier write can’t overwrite later write

• Control Dependence (a.k.a. Procedural Dependence)
– Branch condition must execute before branch target
– Instructions after branch cannot run before branch

Instruction Dependencies (1/2)

Real code has lots of dependencies

for (; (j < high) && (array[j] < array[low]); ++j);

bge j, high, L2
mul $15, j, 4
addu $24, array, $15
lw $25, 0($24)
mul $13, low, 4
addu $14, array, $13
lw $15, 0($14)
bge $25, $15, L2

L1:
addu j, j, 1
. . .

L2:
addu $11, $11, -1
. . .

From
Quicksort:

Hardware Dependency Analysis
• Processor must handle
– Register Data Dependencies (same register)

• RAW, WAW, WAR
– Memory Data Dependencies (same address)

• RAW, WAW, WAR

– Control Dependencies

Pipeline Terminology
• Pipeline Hazards

– Potential violations of program dependencies
• Due to multiple in-flight instructions

– Must ensure program dependencies are not violated

• Hazard Resolution
– Static method: compiler guarantees correctness

• By inserting No-Ops or independent insns between dependent insns
– Dynamic method: hardware checks at runtime

• Two basic techniques: Stall (costs perf.), Forward (costs hw)

• Pipeline Interlock
– Hardware mechanism for dynamic hazard resolution
– Must detect and enforce dependencies at runtime

Pipeline: Steady State

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Instj

Instj+1
Instj+2
Instj+3
Instj+4

Data Hazards
• Necessary conditions:
– WAR: write stage earlier than read stage

• Is this possible in IF-ID-RD-EX-MEM-WB?

– WAW: write stage earlier than write stage
• Is this possible in IF-ID-RD-EX-MEM-WB?

– RAW: read stage earlier than write stage
• Is this possible in IF-ID-RD-EX-MEM-WB?

• If conditions not met, no need to resolve

• Check for both register and memory

Pipeline: Data Hazard

• Only RAW in our case

• How to detect?
– Compare read register specifiers for newer instructions

with write register specifiers for older instructions

t0 t1 t2 t3 t4 t5

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

Instj

Instj+1
Instj+2
Instj+3
Instj+4

Option 1: Stall on Data Hazard

• Instructions in IF and ID stay
• IF/ID pipeline latch not updated
• Send no-op down pipeline (called a bubble)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID Stalled in RD ALU MEM WB

IF Stalled in ID RD ALU MEM WB

Stalled in IF ID RD ALU MEM

IF ID RD ALU

t0 t1 t2 t3 t4 t5

RD

ID

IF

IF ID RD

IF ID

IF

Instj

Instj+1
Instj+2
Instj+3
Instj+4

Option 2: Forwarding Paths (1/3)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Many possible paths
Instj

Instj+1
Instj+2
Instj+3
Instj+4

MEM ALU Requires stalling even with forwarding paths

Option 2: Forwarding Paths (2/3)

ALU

MEM

WB

IF

src1

src2

dest
ID

Register File

Option 2: Forwarding Paths (3/3)

Deeper pipelines in
general require additional

forwarding paths

IF
Register File

src1

src2

ALU

MEM

dest

=
=

=
=

WB

=
=

ID

Pipeline: Control Hazard
t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

• Note: The target of Insti+1 is available at the end of the ALU
stage, but it takes one more cycle (MEM) to be written to the
PC register

Option 1: Stall on Control Hazard

• Stop fetching until branch outcome is known
– Send no-ops down the pipe

• Easy to implement
• Performs poorly

– ~1 of 6 instructions are branches
– Each branch takes 4 cycles
– CPI = 1 + 4 x 1/6 = 1.67 (lower bound)

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

Stalled in IF

Option 2: Prediction for Control Hazards

• Predict branch not taken
• Send sequential instructions down pipeline
• Must stop memory and RF writes
• Kill instructions later if incorrect; we would know at the end of ALU
• Fetch from branch target

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU nop nop

IF ID RD nop nop

IF ID nop nop

IF ID RD

IF ID

IF

nop

nop nop

ALU nop

RD ALU

ID RD

nop

nop

nop

New Insti+2

New Insti+3

New Insti+4

Speculative State Cleared

Fetch Resteered

Option 3: Delay Slots for Control Hazards

• Another option: delayed branches

– # of delay slots (ds) : stages between IF and where the

branch is resolved

• 3 in our example

– Always execute following ds instructions

– Put useful instruction there, otherwise no-op

• Losing popularity

– Just a stopgap (one cycle, one instruction)

– Superscalar processors (later)

• Delay slot just gets in the way (special case)

Legacy from old RISC ISAs

Going Beyond Scalar
• Scalar pipeline limited to CPI ≥ 1.0
– Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
– Superscalar means executing multiple insns in parallel

Architectures for Instruction Parallelism
• Scalar pipeline (baseline)
– Instruction overlap parallelism = D
– Operation Latency = 1
– Peak IPC = 1.0

D

Su
cc

es
si

ve
In

st
ru

ct
io

ns

Time in cycles
1 2 3 4 5 6 7 8 9 10 11 12

D different instructions overlapped

Superscalar Machine
• Superscalar (pipelined) Execution
– Instruction parallelism = D x N
– Operation Latency = 1
– Peak IPC = N per cycle

Su
cc

es
si

ve
In

st
ru

ct
io

ns

Time in cycles
1 2 3 4 5 6 7 8 9 10 11 12

N

D x N different instructions overlapped

Superscalar Example: Pentium
Prefetch

Decode1

Decode2 Decode2

Execute Execute

WritebackWriteback

4× 32-byte buffers

Decode up to 2 insts

Read operands, Addr comp

Asymmetric pipes

u-pipe v-pipe
shift

rotate
some FP

jmp, jcc,
call,
fxch

both
mov, lea,

simple ALU,
push/pop
test/cmp

Pentium Hazards & Stalls
• “Pairing Rules” (when can’t two insns exec?)

– Read/flow dependence
• mov eax, 8
• mov [ebp], eax

– Output dependence
• mov eax, 8
• mov eax, [ebp]

– Partial register stalls
• mov al, 1
• mov ah, 0

– Function unit rules
• Some instructions can never be paired

– MUL, DIV, PUSHA, MOVS, some FP

Limitations of In-Order Pipelines
• If the machine parallelism is increased
– … dependencies reduce performance
– CPI of in-order pipelines degrades sharply

• As N approaches avg. distance between dependent instructions
• Forwarding is no longer effective

– Must stall often

In-order pipelines are rarely full

The In-Order N-Instruction Limit
• On average, parent-child separation is about 5 insn
– (Franklin and Sohi ’92)

Reasonable in-order superscalar is effectively N=2

Ex. Superscalar degree N = 4

Any dependency
between these
instructions will
cause a stall

Dependent insn
must be N = 4

instructions away

Average of 5 means there are many
cases when the separation is < 4…

each of these limits parallelism

