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e Steps in processing an instruction:
— Instruction Fetch (IF_STEP)
— Instruction Decode (ID_STEP)
— Operand Fetch (OF_STEP)
— Execute (EX_STEP)
— Result Store or Write Back (RS_STEP)

* Actions per instruction at each stage given by ISA

* HArch determines how HW implements the steps



* Datapath is HW components and connections

— Determines the static structure of processor

* Control logic controls data flow in datapath

— Control is determined by
* Instruction words

 State of the processor
* Execution results at each stage



* Main components
— Instruction Cache
— Data Cache
— Register File
— Functional Units (ALU, Floating Point Unit, Memory Unit, ...)
— Pipeline Registers

e Auxiliary Components (in advanced processors)
— Reservation Stations
— Reorder Buffer
— Branch Predictor
— Prefetchers

* Lots of glue logic (often multiplexors) to glue these together



Single-cycle

Multi-cycle
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— Low CPI (1)
— Long clock period (to accommodate slowest instruction)

— Short clock period
— High CPI

Process one instruction at a time

Single-cycle control: hardwired

Multi-cycle control: typically micro-programmed

Can we have both low CPI and short clock period?

— Not if datapath executes only one instruction at a time
— No good way to make a single instruction go faster



Multi-cycle

Pipelined
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e Start with multi-cycle design

*  When insn0 goes from stage 1 to stage 2
... insn1 starts stage 1

* Each instruction passes through all stages
... but instructions enter and leave at faster rate

Style Ideal CPI Cycle Time (1/freq)
Single-cycle 1 Long
Multi-cycle >1 Short
Pipelined 1 Short
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 Fetch instruction from instruction cache

— Use PC to index instruction cache
— Increment PC (assume no branches for now)

* Write state to the pipeline register (IF/ID)

— The next stage will read this pipeline register



Stage 1: Fetch Diagram
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* Decodes opcode bits

— Set up Control signals for later stages

 Read input operands from register file
— Specified by decoded instruction bits

* Write state to the pipeline register (ID/EX)
— Opcode
— Register contents, immediate operand
— PC+1 (even though decode didn’t use it)
— Control signals (from insn) for opcode and destReg
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* Perform ALU operations

— Calculate result of instruction

* Control signals select operation
* Contents of regA used as one input
* Either regB or constant offset (imm from insn) used as second input

— Calculate PC-relative branch target
* PC+1+(constant offset)

* Write state to the pipeline register (EX/Mem)

— ALU result, contents of regB, and PC+1+offset
— Control signals (from insn) for opcode and destReg
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* Perform data cache access

— ALU result contains address for LD or ST
— Opcode bits control R/W and enable signals

* Write state to the pipeline register (Mem/WB)

— ALU result and Loaded data
— Control signals (from insn) for opcode and destReg
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e Writing result to register file (if required)

— Write Loaded data to destReg for LD
— Write ALU result to destReg for ALU insn
— Opcode bits control register write enable signal



Stage 5: Write-back Diagram
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* Uniform Sub-operations
— Operation can partitioned into uniform-latency sub-ops

* Repetition of Identical Operations
— Same ops performed on many different inputs

* Independent Operations
— All ops are mutually independent



e Uniform Sub-operations ... NOT!

— Balance pipeline stages
» Stage quantization to yield balanced stages
* Minimize internal fragmentation (left-over time near end of cycle)

* Repetition of Identical Operations ... NOT!

— Unifying instruction types
* Coalescing instruction types into one “multi-function” pipe
* Minimize external fragmentation (idle stages to match length)

* Independent Operations ... NOT!

— Resolve data and resource hazards
* Inter-instruction dependency detection and resolution
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T\r= 6 units

TID= 2 units

TID= 9 units

Tex= 5 units

Tos= 9 units

Without pipelining

Toye® TiEt Tipt Topt Text Tos

=31
Pipelined
Teye ® max{Tis Tip, Tor Tex» Tos}
=9

Speedup =31 /9 =344



 Two methods for stage quantization

— Divide sub-ops into smaller pieces
— Merge multiple sub-ops into one

e Recent/Current trends
— Deeper pipelines (more and more stages)
— Pipelining of memory accesses
— Multiple different pipelines/sub-pipelines



Coarser-Grained Machine Cycle: Finer-Grained Machine Cycle:
4 machine cyc / instruction 11 machine cyc /instruction
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* Data Dependence
— Read-After-Write (RAW) (the only true dependence)

 Read must wait until earlier write finishes

— Anti-Dependence (WAR)

e Write must wait until earlier read finishes (avoid clobbering)

— Output Dependence (WAW)

* Earlier write can’t overwrite later write

e Control Dependence (a.k.a. Procedural Dependence)

— Branch condition must execute before branch target
— Instructions after branch cannot run before branch



nuicksort: 7 for (51 < high) && (array[j] < array[low]); ++i);

Quicksort:
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e Processor must handle

— Register Data Dependencies (same register)
* RAW, WAW, WAR

— Memory Data Dependencies (same address)
« RAW, WAW, WAR

— Control Dependencies



* Pipeline Hazards
— Potential violations of program dependencies
* Due to multiple in-flight instructions
— Must ensure program dependencies are not violated

 Hazard Resolution
— Static method: compiler guarantees correctness
* By inserting No-Ops or independent insns between dependent insns

— Dynamic method: hardware checks at runtime
* Two basic techniques: Stall (costs perf.), Forward (costs hw)

* Pipeline Interlock
— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependencies at runtime
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* Necessary conditions:

— WAR: write stage earlier than read stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

— WAW: write stage earlier than write stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

— RAW: read stage earlier than write stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

* |f conditions not met, no need to resolve

* Check for both register and memory
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* Only RAW in our case

e How to detect?

— Compare read register specifiers for newer instructions
with write register specifiers for older instructions
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Inst;, | IF § 1D B RD JALUEMEME WB
Inst;,, “ m | Stalledin |} RD |
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. . | IF § 1D |
* Instructions in IF and ID stay ) IF |

* |F/ID pipeline latch not updated

* Send no-op down pipeline (called a bubble)
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* Note: The target of Inst,, is available at the end of the ALU
stage, but it takes one more cycle (MEM) to be written to the
PC register



e Stop fetching until branch outcome is known
— Send no-ops down the pipe

* Easy to implement

* Performs poorly
— ~1 of 6 instructions are branches
— Each branch takes 4 cycles
— CPI=1+4x1/6=1.67 (lower bound)
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Predict branch not taken

Send sequential instructions down pipeline

Must stop memory and RF writes

Kill instructions later if incorrect; we would know at the end of ALU
Fetch from branch target



Another option: delayed branches

— # of delay slots (ds) : stages between IF and where the
branch is resolved
* 3in our example

— Always execute following ds instructions
— Put useful instruction there, otherwise no-op

Losing popularity
— Just a stopgap (one cycle, one instruction)

— Superscalar processors (later)
* Delay slot just gets in the way (special case)



e Scalar pipeline limited to CPI > 1.0

— Can never run more than 1 insn per cycle

* “Superscalar” can achieve CPI < 1.0 (i.e., IPC2> 1.0)

— Superscalar means executing multiple insns in parallel




Successive
Instructions

* Scalar pipeline (baseline)

— Instruction overlap parallelism =D D
— Operation Latency = 1 A

r N
— Peak IPC=1.0 |- R N N

D different instructions overlapped

I 2 3 4 5 6 7 8 9 10 Il 12

Time in cycles



Successive

e Superscalar (pipelined) Execution
— Instruction parallelism =D x N
— Operation Latency =1
— Peak IPC = N per cycle

D x N different instructions overlapped

N

Instructions

I 2 3 4 5 6 7 8 9 10 Il 12
Time in cycles



4x 32-byte buffers

Decodel Decode up to 2 insts

Decode2 Decode2 Read operands,Addr comp

Asymmetric pipes

both u-pipe v-pipe
mov, lea, shift jmp; jec,
simple ALU, rotate call,
Writeback Writeback push/pop  some FP fxch

test/cmp



“Pairing Rules” (when can’t two insns exec?)

— Read/flow dependence
* mov eax, 8
* mov [ebp], eax
— OQOutput dependence
* mov eax, 8
* mov eax, [ebp]
— Partial register stalls
* moval,l
* movah,O
— Function unit rules

* Some instructions can never be paired
— MUL, DIV, PUSHA, MOVS, some FP



* If the machine parallelism is increased

— ... dependencies reduce performance

— CPI of in-order pipelines degrades sharply
* As N approaches avg. distance between dependent instructions
* Forwarding is no longer effective

— Must stall often



* On average, parent-child separation is about 5 insn

— (Franklin and Sohi ’92)

Dependent insn
must be N = 4
instructions away

Ex. Superscalar degree N = 4 4

Any dependency
between these <
instructions will

cause a stall

q
Average of 5 means there are many

cases when the separation is < 4...
each of these limits parallelism




