COMP 590-154:
Computer Architecture

Core Pipelining

e Steps in processing an instruction:
— Instruction Fetch (IF_STEP)
— Instruction Decode (ID_STEP)
— Operand Fetch (OF_STEP)
— Execute (EX_STEP)
— Result Store or Write Back (RS_STEP)

* Actions per instruction at each stage given by ISA

* HArch determines how HW implements the steps

* Datapath is HW components and connections

— Determines the static structure of processor

* Control logic controls data flow in datapath

— Control is determined by
* Instruction words

 State of the processor
* Execution results at each stage

* Main components
— Instruction Cache
— Data Cache
— Register File
— Functional Units (ALU, Floating Point Unit, Memory Unit, ...)
— Pipeline Registers

e Auxiliary Components (in advanced processors)
— Reservation Stations
— Reorder Buffer
— Branch Predictor
— Prefetchers

* Lots of glue logic (often multiplexors) to glue these together

Single-cycle

Multi-cycle

ins0.(fetch,dec,ex,mem,wb)

ins1.(fetch,dec,ex,mem,wb)

ins0.fetch

ins0.(dec,ex)

ins0.(mem,wb)

ins1.fetch

ins1.(dec,ex)

ins1.(mem,wb)

—l

— Low CPI (1)
— Long clock period (to accommodate slowest instruction)

— Short clock period
— High CPI

Process one instruction at a time

Single-cycle control: hardwired

Multi-cycle control: typically micro-programmed

Can we have both low CPI and short clock period?

— Not if datapath executes only one instruction at a time
— No good way to make a single instruction go faster

Multi-cycle

Pipelined

insO.fetch

ins0.(dec,ex)

ins0.(mem,wb)

ins1.fetch

ins1.(dec,ex)

ins1.(mem,wb)

insO.fetch

ins0.(dec,ex)

ins0.(mem,wb)

—

ins1.fetch

ins1.(dec,ex)

ins1.(mem,wb)

e Start with multi-cycle design

* When insn0 goes from stage 1 to stage 2
... insn1 starts stage 1

* Each instruction passes through all stages
... but instructions enter and leave at faster rate

Style Ideal CPI Cycle Time (1/freq)
Single-cycle 1 Long
Multi-cycle >1 Short
Pipelined 1 Short

address .
D

address

»

w *

hit?

hit?

address

a

Stage delay = n
Bandwidth = ~(1/)

Stage delay =/,
Bandwidth = ~(%/)

Stage delay = "/,
Bandwidth = ~(3/3)

f Write-Back (WB) e
L
° e N ™\
—A+1)
1 I=le; — » Reg
File
A I-cache D-cache

\ 4

Inst. Decode &
Inst. Fetch Register Read Execute Memory

N ﬂ) /(ID) (EX) (MEM)

IF_STEP |ID_STEP OF_STEP EX_STEP RS_STEP

 Fetch instruction from instruction cache

— Use PC to index instruction cache
— Increment PC (assume no branches for now)

* Write state to the pipeline register (IF/ID)

— The next stage will read this pipeline register

Stage 1: Fetch Diagram

Instruction
Cache

IF /1D
Pipeline register

* Decodes opcode bits

— Set up Control signals for later stages

 Read input operands from register file
— Specified by decoded instruction bits

* Write state to the pipeline register (ID/EX)
— Opcode
— Register contents, immediate operand
— PC+1 (even though decode didn’t use it)
— Control signals (from insn) for opcode and destReg

P o mnTTTnT T T YO
regA

. regB o

S o

= _destReg | RegisterFile 3
data
............... IS

IF/ID ID / EX

Pipeline register Pipeline register

* Perform ALU operations

— Calculate result of instruction

* Control signals select operation
* Contents of regA used as one input
* Either regB or constant offset (imm from insn) used as second input

— Calculate PC-relative branch target
* PC+1+(constant offset)

* Write state to the pipeline register (EX/Mem)

— ALU result, contents of regB, and PC+1+offset
— Control signals (from insn) for opcode and destReg

target

(0] >N
b o
O e
a >
U
@rrnnnnafilcansnnnn s a Bl s assmsEEEEEEE AR RN AR EEEEEEEAEEEEAEEEEEEEEEEEEEEEEsEEEEsEEEEsEEEREERaEsEsnaRDessgsssassnssnsnensanennnnaflananlgfnannnnanaf Bk s s annnnnnnnnn;
@ rrrnnnnfihn e dBls s s nsmsassEsEEsEsEssEsEEsEsEssEsEssssEssssssansnsananennanennanannnnannanannnnnna R EE M i anannnnannnnana R R R R R R R AR AL s s s n s s n
ID / EX EX/Mem

Pipeline register Pipeline register

* Perform data cache access

— ALU result contains address for LD or ST
— Opcode bits control R/W and enable signals

* Write state to the pipeline register (Mem/WB)

— ALU result and Loaded data
— Control signals (from insn) for opcode and destReg

Execute

target

in_addr

in_data

Data Cache

Write-back

EX/Mem
Pipeline register

Mem/WB
Pipeline register

e Writing result to register file (if required)

— Write Loaded data to destReg for LD
— Write ALU result to destReg for ALU insn
— Opcode bits control register write enable signal

Stage 5: Write-back Diagram

«data

destR :
Mem/WB ‘
Pipeline register

regA

regB

qaed
dest

Register
File

IF/ID

ID/EX

Data
Cache

EX/Mem

Mem/VVB

data
dest

g

* Uniform Sub-operations
— Operation can partitioned into uniform-latency sub-ops

* Repetition of Identical Operations
— Same ops performed on many different inputs

* Independent Operations
— All ops are mutually independent

e Uniform Sub-operations ... NOT!

— Balance pipeline stages
» Stage quantization to yield balanced stages
* Minimize internal fragmentation (left-over time near end of cycle)

* Repetition of Identical Operations ... NOT!

— Unifying instruction types
* Coalescing instruction types into one “multi-function” pipe
* Minimize external fragmentation (idle stages to match length)

* Independent Operations ... NOT!

— Resolve data and resource hazards
* Inter-instruction dependency detection and resolution

Instruction Fetch

Instruction Decode

Operand Fetch

Instruction Execute

Write-back

l

T\r= 6 units

TID= 2 units

TID= 9 units

Tex= 5 units

Tos= 9 units

Without pipelining

Toye® TiEt Tipt Topt Text Tos

=31
Pipelined
Teye ® max{Tis Tip, Tor Tex» Tos}
=9

Speedup =31 /9 =344

 Two methods for stage quantization

— Divide sub-ops into smaller pieces
— Merge multiple sub-ops into one

e Recent/Current trends
— Deeper pipelines (more and more stages)
— Pipelining of memory accesses
— Multiple different pipelines/sub-pipelines

Coarser-Grained Machine Cycle: Finer-Grained Machine Cycle:
4 machine cyc / instruction 11 machine cyc /instruction

TlF&|D= 8 units

Tor= 9 units

stages = 4

Teye= 9 units Tex= 5 units Teye= 3 units
Tos= 9 units

N
_fF
[oF |
m # stages = | |
[oF |
|—'§—i
LW
B

AMDAHL 470V/7

IF_STEP

MIPS R2000/R3000
ID_STEP —
OF STEP . Read REG |
| Addr GEN |

| Cache Read |

| Cache Read |

EX_STEP < NG
| EX2 |
RS_STEP

* Data Dependence
— Read-After-Write (RAW) (the only true dependence)

 Read must wait until earlier write finishes

— Anti-Dependence (WAR)

e Write must wait until earlier read finishes (avoid clobbering)

— Output Dependence (WAW)

* Earlier write can’t overwrite later write

e Control Dependence (a.k.a. Procedural Dependence)

— Branch condition must execute before branch target
— Instructions after branch cannot run before branch

nuicksort: 7 for (51 < high) && (array[j] < array[low]); ++i);

Quicksort:

bge j, high, L;
mul
addu
Iw

mul

addu >
Iw I 0($14)

L|: }/
i i I
e o 0 l])

addu

addu $I1, $I1, -

e Processor must handle

— Register Data Dependencies (same register)
* RAW, WAW, WAR

— Memory Data Dependencies (same address)
« RAW, WAW, WAR

— Control Dependencies

* Pipeline Hazards
— Potential violations of program dependencies
* Due to multiple in-flight instructions
— Must ensure program dependencies are not violated

 Hazard Resolution
— Static method: compiler guarantees correctness
* By inserting No-Ops or independent insns between dependent insns

— Dynamic method: hardware checks at runtime
* Two basic techniques: Stall (costs perf.), Forward (costs hw)

* Pipeline Interlock
— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependencies at runtime

3 A E
= B
3 A E
= B
3 A E
= B
nmmmmn
ITR |

* Necessary conditions:

— WAR: write stage earlier than read stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

— WAW: write stage earlier than write stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

— RAW: read stage earlier than write stage
e Is this possible in IF-ID-RD-EX-MEM-WB?

* |f conditions not met, no need to resolve

* Check for both register and memory

inst, [N NN [N
Inst;, | IF §f 1D JRD| WB
Inst;. | IF §f 1D JRD|

!ALU] MEM
_ID I RD JALUI
| IF § ID

| IF |

Inst;,,

:
x4 b

ALU

* Only RAW in our case

e How to detect?

— Compare read register specifiers for newer instructions
with write register specifiers for older instructions

WEET o 1o farufrer] we'
Inst;, | IF § 1D B RD JALUEMEME WB
Inst;,, “ m | Stalledin |} RD |
Inst;,) IF_(Jiszariedlini W] 1D | RD (JALUJMEMY W |
Inst;., [stanedlini 2] - § 1D J RO |
| IF [§ 1D J RD JALUI
J IF § 1D JRD|

. . | IF § 1D |
* Instructions in IF and ID stay) IF |

* |F/ID pipeline latch not updated

* Send no-op down pipeline (called a bubble)

ST o 1 Ro Bacuien] we

Inst;, “m

Inst;., | IF § 1D g/ RD JALUSMEME WB |

Inst;. | IF | 1D J RD JALURMEME WSB!

| IF § 1D §)RD JALURMEMEWE |
| IF [} ID § RD JALURMEM

| IF [} ID I RD JALUI
| IF § iID JRD|

Many possible paths

Inst;,,

Y ——JXX¥ Requires stalling even with forwarding paths
_— -

Register File)

srcl

src2 =

a

dest

Deeper pipelines in

general require additional

forwarding paths

* Note: The target of Inst,, is available at the end of the ALU
stage, but it takes one more cycle (MEM) to be written to the
PC register

e Stop fetching until branch outcome is known
— Send no-ops down the pipe

* Easy to implement

* Performs poorly
— ~1 of 6 instructions are branches
— Each branch takes 4 cycles
— CPI=1+4x1/6=1.67 (lower bound)

LIF 1D JRD | Speculative State Cleared

Inst,

Inst;,, ' MEM

Inst;., |

Inst.,

NSt
New Inst;,, —> “ m m M
Newlnsts Fetch Resteered LF D RO
New Inst;,, “ m m

Predict branch not taken

Send sequential instructions down pipeline

Must stop memory and RF writes

Kill instructions later if incorrect; we would know at the end of ALU
Fetch from branch target

Another option: delayed branches

— # of delay slots (ds) : stages between IF and where the
branch is resolved
* 3in our example

— Always execute following ds instructions
— Put useful instruction there, otherwise no-op

Losing popularity
— Just a stopgap (one cycle, one instruction)

— Superscalar processors (later)
* Delay slot just gets in the way (special case)

e Scalar pipeline limited to CPI > 1.0

— Can never run more than 1 insn per cycle

* “Superscalar” can achieve CPI < 1.0 (i.e., IPC2> 1.0)

— Superscalar means executing multiple insns in parallel

Successive
Instructions

* Scalar pipeline (baseline)

— Instruction overlap parallelism =D D
— Operation Latency = 1 A

r N
— Peak IPC=1.0 |- R N N

D different instructions overlapped

I 2 3 4 5 6 7 8 9 10 Il 12

Time in cycles

Successive

e Superscalar (pipelined) Execution
— Instruction parallelism =D x N
— Operation Latency =1
— Peak IPC = N per cycle

D x N different instructions overlapped

N

Instructions

I 2 3 4 5 6 7 8 9 10 Il 12
Time in cycles

4x 32-byte buffers

Decodel Decode up to 2 insts

Decode2 Decode2 Read operands,Addr comp

Asymmetric pipes

both u-pipe v-pipe
mov, lea, shift jmp; jec,
simple ALU, rotate call,
Writeback Writeback push/pop some FP fxch

test/cmp

“Pairing Rules” (when can’t two insns exec?)

— Read/flow dependence
* mov eax, 8
* mov [ebp], eax
— OQOutput dependence
* mov eax, 8
* mov eax, [ebp]
— Partial register stalls
* moval,l
* movah,O
— Function unit rules

* Some instructions can never be paired
— MUL, DIV, PUSHA, MOVS, some FP

* If the machine parallelism is increased

— ... dependencies reduce performance

— CPI of in-order pipelines degrades sharply
* As N approaches avg. distance between dependent instructions
* Forwarding is no longer effective

— Must stall often

* On average, parent-child separation is about 5 insn

— (Franklin and Sohi ’92)

Dependent insn
must be N = 4
instructions away

Ex. Superscalar degree N = 4 4

Any dependency
between these <
instructions will

cause a stall

q
Average of 5 means there are many

cases when the separation is < 4...
each of these limits parallelism

