
Review and Background

1

timeorig

f(1 - f)

timeorig

f(1 - f)

timeorig

Amdahl’s Law
Speedup = timewithout enhancement / timewith enhancement

An enhancement speeds up fraction f of a task by factor S
timenew = timeorig·((1-f) + f/S)
Soverall = 1 / ((1-f) + f/S)

(1 - f)

timenew

f/S(1 - f)

timenew

f/S

The Iron Law of Processor Performance

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time

´´=

We will concentrate on CPI, others are important too!

Total Work
In Program

CPI or 1/IPC 1/f (frequency)

Algorithms,
Compilers,

ISA Extensions
Microarchitecture

Microarchitecture,
Process Tech

Performance

• Latency (execution time): time to finish one task
• Throughput (bandwidth): number of tasks/unit time
• Throughput can exploit parallelism, latency can’t
• Sometimes complimentary, often contradictory

• Example: move people from A to B, 10 miles
• Car: capacity = 5, speed = 60 miles/hour
• Bus: capacity = 60, speed = 20 miles/hour
• Latency: car = 10 min, bus = 30 min
• Throughput: car = 15 PPH (count return trip), bus = 60 PPH

No right answer: pick metric for your goals

Performance Improvement

• Processor A is X times faster than processor B if
• Latency(P,A) = Latency(P,B) / X
• Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if
• Latency(P,A) = Latency(P,B) / (1+X/100)
• Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example
• Latency? Car is 3 times (200%) faster than bus
• Throughput? Bus is 4 times (300%) faster than car

Partial Performance Metrics Pitfalls

• Which processor would you buy?
• Processor A: CPI = 2, clock = 2.8 GHz
• Processor B: CPI = 1, clock = 1.8 GHz
• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example
• 800 MHz Pentium III faster than 1 GHz Pentium 4
• Same ISA and compiler

Averaging Performance Numbers (1/2)
• Latency is additive, throughput is not

Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
Throughput(P1+P2,A) != Throughput(P1,A)+Throughput(P2,A)

• Example:
• 180 miles @ 30 miles/hour + 180 miles @ 90 miles/hour
• 6 hours at 30 miles/hour + 2 hours at 90 miles/hour

• Total latency is 6 + 2 = 8 hours
• Total throughput is not 60 miles/hour

• Total throughput is only 45 miles/hour! (360 miles / (6 + 2 hours))

Arithmetic mean is not always the answer!

Averaging Performance Numbers (2/2)

• Arithmetic: times
• proportional to time
• e.g., latency

• Harmonic: rates
• inversely proportional to time
• e.g., throughput

• Geometric: ratios
• unit-less quantities
• e.g., speedups

å =

n

i iTimen 1

1

å =

n

i

iRate

n

1

1

n

n

i
iRatioÕ

=1

Memorize these to avoid looking them up later

Parallelism: Work and Critical Path

• Parallelism: number of independent tasks available
• Work (T1): time on sequential system
• Critical Path (T¥): time on infinitely-parallel system

• Average Parallelism:
Pavg = T1 / T¥
• For a p-wide system:

Tp ³ max{ T1/p, T¥ }
Pavg >> p Þ Tp » T1/p

x = a + b;
y = b * 2
z =(x-y) * (x+y)

Can trade off frequency for parallelism

Locality Principle

• Recent past is a good indication of near future

Temporal Locality: If you looked something up, it is very likely that you will look
it up again soon

Spatial Locality: If you looked something up, it is very likely you will look up
something nearby soon

Power vs. Energy (1/2)

• Power: instantaneous rate of energy transfer
• Expressed in Watts
• In Architecture, implies conversion of electricity to heat
• Power(Comp1+Comp2)=Power(Comp1)+Power(Comp2)

• Energy: measure of using power for some time
• Expressed in Joules
• power * time (joules = watts * seconds)
• Energy(OP1+OP2)=Energy(OP1)+Energy(OP2)

Power vs. Energy (2/2)

Does this example help or hurt?

Why is energy important?
• Because electricity consumption has costs
• Impacts battery life for mobile
• Impacts electricity costs for tethered

• Delivering power for buildings, countries
• Gets worse with larger data centers ($7M for 1000 racks)

Why is power important?

• Because power has a peak
• All power “spent” is converted to heat
• Must dissipate the heat
• Need heat sinks and fans

• What if fans not fast enough?
• Chip powers off (if it’s smart enough)
• Melts otherwise

• Thermal failures even when fans OK
• 50% server reliability degradation for +10oC
• 50% decrease in hard disk lifetime for +15oC

Power

• Dynamic power vs. Static power
• Static: “leakage” power
• Dynamic: “switching” power

• Static power: steady, constant energy cost
• Dynamic power: transitions from 0à1 and 1à0

Power: The Basics (1/2)
• Dynamic Power

• Related to switching activity of transistors (from 0à1 and 1à0)

• Dynamic Power ∝ "#$$%&'
• C: capacitance, function of transistor size and wire length
• Vdd: Supply voltage
• A: Activity factor (average fraction of transistors switching)
• f: clock frequency
• About 50-70% of processor power

Applied Voltage

Source Drain

Gate

Current

Threshold Voltage

Gate

Source Drain

+ + + + +

- - - - -

Current

Power: The Basics (2/2)
• Static Power

• Current leaking from a transistor even if doing nothing (steady, constant
energy cost)

• Static Power ∝ "## and ∝ $%&'()* and ∝ $&+,
• This is a first-order model
• -., -/ : some positive constants
• "01: Threshold Voltage
• 2: Temperature
• About 30-50% of processor power

Channel Leakage
Sub-threshold Conductance

Gate Leakage

Thermal Runaway
• Leakage is an exponential function of temperature

• é Temp leads to é Leakage

• Which burns more power

• Which leads to é Temp, which leads to…

Positive feedback loop will melt your chip

Why Power Became an Issue? (1/2)
• Ideal scaling was great (aka Dennard scaling)
• Every new semiconductor generation:

• Transistor dimension: x 0.7
• Transistor area: x 0.5
• C and Vdd: x 0.7
• Frequency: 1 / 0.7 = 1.4

• Constant dynamic power density
• In those good old days, leakage was not a big deal

40% faster and 2x more transistors at same power

Dynamic	Power:
/011234

Why Power Became an Issue? (2/2)
• Recent reality: Vdd does not decrease much

• Switching speed is roughly proportional to Vdd - Vth
• If too close to threshold voltage (Vth) → slow transistor
• Fast transistor & low Vdd → low Vth → exponential leakage increase û

→Dynamic power density keeps increasing
• Leakage power has also become a big deal today

• Due to lower Vth, smaller transistors, higher temperatures, etc.

• Example: power consumption in Intel processors
• Intel 80386 consumed ~ 2 W
• 3.3 GHz Intel Core i7 consumes ~ 130 W
• Heat must be dissipated from 1.5 x 1.5 cm2 chip
• This is the limit of what can be cooled by air

Referred to as the Power Wall

How to Reduce Power? (1/3)
• Clock gating
• Stop switching in unused components
• Done automatically in most designs
• Near instantaneous on/off behavior

• Power gating
• Turn off power to unused cores/caches
• High latency for on/off

• Saving SW state, flushing dirty cache lines, turning off clock tree
• Carefully done to avoid voltage spikes or memory bottlenecks

• Issue: Area & power consumption of power gate
• Opportunity: use thermal headroom for other cores

How to Reduce Power? (2/3)
• Reduce Voltage (V): quadratic effect on dyn. power
• Negative (~linear) effect on frequency

• Dynamic Voltage/Frequency Scaling (DVFS): set frequency to the
lowest needed
• Execution time = IC * CPI * f

• Scale back V to lowest for that frequency
• Lower voltage à slower transistors
• Dyn. Power ≈ C * V2 * F

Not Enough! Need Much More!

How to Reduce Power? (3/3)
• Design for E & P efficiency rather than speed

• New architectural designs:
• Simplify the processor, shallow pipeline, less speculation
• Efficient support for high concurrency (think GPUs)
• Augment processing nodes with accelerators
• New memory architectures and layouts
• Data transfer minimization
• …

• New technologies:
• Low supply voltage (Vdd) operation: Near-Threshold Voltage Computing
• Non-volatile memory (Resistive memory, STTRAM, …)
• 3D die stacking
• Efficient on-chip voltage conversion
• Photonic interconnects
• …

Processor Is Not Alone

Need whole-system approaches to save energy

23%

20%

20% 4%
10%

9%

14%

Processor
Memory
I/O
Disk
Services
Fans
AC/DC Conversion

SunFire T2000

< ¼ System Power > ½ CPU Power

ISA: A contract between HW and SW

• ISA: Instruction Set Architecture
• A well-defined hardware/software interface

• The “contract” between software and hardware
• Functional definition of operations supported by hardware
• Precise description of how to invoke all features

• No guarantees regarding
• How operations are implemented
• Which operations are fast and which are slow (and when)
• Which operations take more energy (and which take less)

Components of an ISA

• Programmer-visible states
• Program counter, general purpose registers,

memory, control registers

• Programmer-visible behaviors
• What to do, when to do it

• A binary encoding

if imem[rip]==“add rd, rs, rt”
then

rip Ü rip+1
gpr[rd]=gpr[rs]+grp[rt]

Example “register-transfer-level”
description of an instruction

ISAs last forever, don’t add stuff you don’t need

RISC vs. CISC

• Recall Iron Law:
• (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
• Improve “instructions/program” with “complex” instructions
• Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
• Improve “cycles/instruction” with many single-cycle instructions
• Increases “instruction/program”, but hopefully not as much

• Help from smart compiler
• Perhaps improve clock cycle time (seconds/cycle)

• via aggressive implementation allowed by simpler instructions

Today’s x86 chips translate CISC into ~RISC

IssueDecode MemoryExecuteAddr-gen. Fetch

Prototypical Processor Organization

Instruction
Access

Register
File

PC

+4

Data
AccessALU

(Write-back)

