
COMP 590-154:
Computer Architecture

Shared-Memory Multi-Processors



Shared-Memory Multiprocessors
• Multiple threads use shared memory (address space)
– “SysV Shared Memory” or “Threads” in software

• Communication implicit via loads and stores
– Opposite of explicit message-passing multiprocessors

• Theoretical foundation: PRAM model

P1 P2 P3 P4

Memory System



Why Shared Memory?
• Pluses
– App sees multitasking uniprocessor
– OS needs only evolutionary extensions
– Communication happens without OS

• Minuses
– Synchronization is complex
– Communication is implicit (hard to optimize)
– Hard to implement (in hardware)

• Result
– SMPs and CMPs are most successful machines to date
– First with multi-billion-dollar markets



Paired vs. Separate Processor/Memory?

• Separate CPU/memory
– Uniform memory access

(UMA)
• Equal latency to memory

– Low peak performance

• Paired CPU/memory
– Non-uniform memory access

(NUMA)
• Faster local memory
• Data placement matters

– High peak performance

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR



Shared vs. Point-to-Point Networks

• Shared network
– Example: bus
– Low latency
– Low bandwidth

• Doesn’t scale >~16 cores
– Simple cache coherence

• Point-to-point network:
– Example: mesh, ring
– High latency (many “hops”)
– Higher bandwidth

• Scales to 1000s of cores
– Complex cache coherence

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR



Organizing Point-To-Point Networks
• Network topology: organization of network
– Trade off perf. (connectivity, latency, bandwidth) « cost

• Router chips
– Networks w/separate router chips are indirect
– Networks w/ processor/memory/router in chip are direct

• Fewer components, “Glueless MP”

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR

R

R

R

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR



Issues for Shared Memory Systems
• Two big ones
– Cache coherence
– Memory consistency model

• Closely related
• Often confused



A: 0

Cache Coherence: The Problem (1/2)
• Variable A initially has value 0
• P1 stores value 1 into A
• P2 loads A from memory and sees old value 0

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1

Need to do something to keep P2’s cache coherent



A: 0

Cache Coherence: The Problem (2/2)

• P1 and P2 have variable A (value 0) in their caches
• P1 stores value 1 into A
• P2 loads A from its cache and sees old value 0

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1

Need to do something to keep P2’s cache coherent



Approaches to Cache Coherence
• Software-based solutions
– Mechanisms:

• Mark cache blocks/memory pages as cacheable/non-cacheable
• Add “Flush” and “Invalidate” instructions

– Could be done by compiler or run-time system
– Difficult to get perfect (e.g., what about memory aliasing?)

• Hardware solutions are far more common
– System ensures everyone always sees the latest value



Coherence with Write-through Caches
• Allows multiple readers, but writes through to bus
– Requires Write-through, no-write-allocate cache

• All caches must monitor (aka “snoop”) all bus traffic
– Simple state machine for each cache frame

Bus

P1t1: Store A=1 P2

A: 0

A [V]: 0 A [V]: 0

Main Memory

Write-through
No-write-allocate

t2: BusWr A=1

t3: Invalidate AA [V I]: 0

A: 0 1

A [V]: 0 1



Valid-Invalid Snooping Protocol
• Processor Actions
– Ld, St, BusRd, BusWr

• Bus Messages
– BusRd, BusWr

• Track 1 bit per cache frame
– Valid/Invalid

Store / BusWr

BusWr / --

Store / BusWr

Load / BusRd

Load / --

Valid

Invalid



Supporting Write-Back Caches
• Write-back caches are good
– Drastically reduce bus write bandwidth

• Add notion of “ownership” to Valid-Invalid
– When “owner” has only replica of a cache block

• Update it freely
– Multiple readers are ok

• Not allowed to write without gaining ownership
– On a read, system must check if there is an owner

• If yes, take away ownership



Modified-Shared-Invalid (MSI) States
• Processor Actions
– Load, Store, Evict

• Bus Messages 
– BusRd, BusRdX, BusInv, BusWB, BusReply

(Here for simplicity, some messages can be combined)

• Track 3 states per cache frame
– Invalid: cache does not have a copy
– Shared: cache has a read-only copy; clean

• Clean: memory (or later caches) is up to date

– Modified: cache has the only valid copy; writable; dirty
• Dirty: memory (or later caches) is out of date



Simple MSI Protocol (1/9)

Invalid

Load / BusRd

Shared

Bus

A [I]

A: 0

P2

A [I]

P1
1: Load A

2: BusRd A

3: BusReply A

A [I S]: 0



Simple MSI Protocol (2/9)

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Bus

A [I]

A: 0

P2

A [S]: 0

P1
1: Load A

2: BusRd A
3: BusReply A

1: Load A

A [I S]: 0



Simple MSI Protocol (3/9)

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Evict / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

A [S]: 0A [S I]

Evict A



A [S]: 0

Simple MSI Protocol (4/9)
St

or
e 

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRdX / [BusReply]

Bus

A [I]

A: 0

P2

A [S I]: 0

P1
1: Store A

2: BusRdX A
3: BusReply A

A [I M]: 0 1

Load, Store / --



Simple MSI Protocol (5/9)
St

or
e 

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRd / B
usReply

Load, Store / --

BusRdX / [BusReply]

Bus

A [M]: 1

A: 0

P2

A [I]

P1
1: Load A

2: BusRd A
3: BusReply A

A [I S]: 1 A [M S]: 1

A: 0 14: Snarf A



Simple MSI Protocol (6/9)
St

or
e 

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRd / B
usReply

Load, Store / --

Store
/ B

usIn
v

Bus

A [S]: 1

A: 1

P2

A [S]: 1

P1

1: Store A
aka “Upgrade”

2: BusInv A

A [S M]: 2 A [S I]

BusRdX / [BusReply]BusRdX, BusInv / [BusReply]



Simple MSI Protocol (7/9)
St

or
e 

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

BusRdX / BusReply

Evict / --

BusRd / B
usReply

Load, Store / --

Store
/ B

usIn
v

BusRdX, BusInv / [BusReply]

Bus

A [I]

A: 1

P2

A [M]: 2

P1
1: Store A

2: BusRdX A
3: BusReply A

A [M I]: 2 A [I M]: 3



Simple MSI Protocol (8/9)
St

or
e 

/ 
B

us
R

dX

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

B
usR

dX / B
usReply

Evict / --

BusR
d / B

usR
eply

Evict / B
usW

B

Load, Store / --

Store
/ B

usIn
v

BusRdX, BusInv / [BusReply]

Bus

A [M]: 3

A: 1

P2

A [I]

P1

1: Evict A

2: BusWB A

A [M I]: 3

A: 1 3



Simple MSI Protocol (9/9)
St

or
e 

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Cache Actions:
• Load, Store, Evict 
Bus Actions:
• BusRd, BusRdX

BusInv, BusWB,
BusReplyModified

BusRdX / BusReply

Evict / --

BusRd / B
usReply

Evict / BusW
B

Load, Store / --

Store / B
usIn

v

BusRdX, BusInv / [BusReply]

Usable coherence protocol



Scalable Cache Coherence
• Part I: bus bandwidth
– Replace non-scalable bandwidth substrate (bus)

…with scalable-bandwidth one (e.g., mesh)
• Part II: processor snooping bandwidth
– Most snoops result in no action
– Replace non-scalable broadcast protocol (spam everyone)

…with scalable directory protocol (spam cores that care)

Requires a “directory” to keep track of “sharers”



Directory Coherence Protocols
• Extend memory to track caching information
• For each physical cache line, a home directory tracks:
– Owner: core that has a dirty copy (i.e., M state)
– Sharers: cores that have clean copies (i.e., S state)

• Cores send coherence events to home directory
– Home directory only sends events to cores that care



Read Transaction
• L has a cache miss on a load instruction

L H

1: Read Req

2: Read Reply



4-hop Read Transaction  
• L has a cache miss on a load instruction
– Block was previously in modified state at R

L H

1: Read Req

4: Read Reply

R

State: M 
Owner: R

2: Recall Req

3: Recall Reply



3-hop Read Transaction  
• L has a cache miss on a load instruction
– Block was previously in modified state at R

L H

1: Read Req

3: Read Reply

R

State: M 
Owner: R

2: Fwd’d Read Req

3: Fwd’d Read Ack



An Example Race: Writeback & Read
• L has dirty copy, wants to write back to H
• R concurrently sends a read to H

H

1: WB Req

5: Read Reply

R

State: M 
Owner: L

2: Read Req

3: Fwd’d Read Req

4:

Race ! 
WB & Fwd Rd

No need to ack

6:

Race!
Final State: S

No need to Ack

Races require complex intermediate states

L



Basic Operation: Read

Read A (miss)
L Directory R

Read A

Fill A A: Shared, #1

Typical way to reason about directories



Basic Operation: Write

Read A (miss)
Read A

Fill A A: Shared, #1

ReadExclusive A
Invalidate A

Fill A
Inv Ack A

A: Mod., #2

L Directory R



Coherence vs. Consistency
• Coherence concerns only one memory location
• Consistency concerns ordering for all locations
• A Memory System is Coherent if
– Can serialize all operations to that location

• Operations performed by any core appear in program order

– Read returns value written by last store to that location 
• A Memory System is Consistent if
– It follows the rules of its Memory Model

• Operations on memory locations appear in some defined order



Why Coherence != Consistency
/* initial A = B = flag = 0 */
P1 P2

A = 1; while (flag == 0); /* spin */
B = 1; print A;
flag = 1; print B;

• Intuition says we see “1” printed twice (A,B)
• Coherence doesn’t say anything
– Difference memory locations

• Uniprocessor ordering (LSQ) won’t help

Consistency defines what is “correct” behavior



Sequential Consistency (SC)

switch randomly set
after each memory op

processors
issue 
memory 
ops
in 
program 
order

P1 P2 P3

Memory

Defines Single Sequential Order Among All Ops.



Sufficient Conditions for SC
“A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all 
the processors were executed in some sequential order, 
and the operations of each individual processor appear 
in this sequence in the order specified by its program.”

-Lamport, 1979
• Every proc. issues memory ops in program order
• Memory ops happen (start and end) atomically
– On Store, wait to commit before issuing next memory op
– On Load, wait to write back before issuing next op

Easy to reason about, very slow (without ugly tricks)



Mutual Exclusion Example
• Mutually exclusive access to a critical region
– Works as advertised under Sequential Consistency
– Fails if P1 and P2 see different Load/Store order

• OoO allows P1 to read B before writing (committing) A

P1 P2
lockA: A = 1; lockB: B=1;
if (B != 0) if (A != 0)

{ A = 0; goto lockA; } { B = 0; goto lockB; }
/* critical section*/ /* critical section*/
A = 0; B = 0;



Problems with SC Memory Model
• Difficult to implement efficiently in hardware
– Straight-forward implementations:

• No concurrency among memory access
• Strict ordering of memory accesses at each node
• Essentially precludes out-of-order CPUs

• Unnecessarily restrictive
– Most parallel programs won’t notice out-of-order accesses

• Conflicts with latency hiding techniques



Mutex Example w/ Store Buffer

P1 P2
lockA: A = 1; lockB: B=1;
if (B != 0) if (A != 0)

{ A = 0; goto lockA; } { B = 0; goto lockB; }
/* critical section*/ /* critical section*/
A = 0; B = 0;

Shared Bus

P1
Read B
t1 t3

P2
Read A
t2 t4

A: 0
B: 0

Write A Write B

Does not work



Relaxed Consistency Models

• Sequential Consistency (SC):
– R → W, R → R, W → R, W → W

• Total Store Ordering (TSO) relaxes W → R
– R → W, R → R, W → W

• Partial Store Ordering relaxes W → W (coalescing WB)
– R → W, R → R

• Weak Ordering or Release Consistency (RC)
– All ordering explicitly declared

• Use fences to define boundaries
• Use acquire and release to force flushing of values

X →Y 
X must complete before Y



Atomic Operations & Synchronization
• Atomic operations perform multiple actions together
– Each of these can implement the others

• Compare-and-Swap (CAS)
– Compare memory value to arg1, write arg2 on match

• Test-and-Set
– Overwrite memory value with arg1 and return old value

• Fetch-and-Increment
– Increment value in memory and return the old value

• Load-Linked/Store-Conditional (LL/SC)
– Two operations, but Store succeeds iff value unchanged


