
COMP 590-154:
Computer Architecture

Multi-{Socket,Core,Thread}

Getting More Performance
• Keep pushing IPC and/or frequenecy
– Design complexity (time to market)
– Cooling (cost)
– Power delivery (cost)
– …

• Possible, but too costly

Bridging the Gap

IPC
100

10

1

Single-Issue
Pipelined

Superscalar
Out-of-Order

(Today)

Superscalar
Out-of-Order
(Hypothetical-

Aggressive)

Limits

Diminishing returns w.r.t.
larger instruction window,

higher issue-width

Power has been growing
exponentially as well

Watts /

Higher Complexity not Worth Effort

“Effort”

Performance

Scalar
In-Order

Moderate-Pipe
Superscalar/OOO

Very-Deep-Pipe
Aggressive

Superscalar/OOO

Made sense to go
Superscalar/OOO:

good ROI

Very little gain for
substantial effort

User Visible/Invisible

• All performance gains up to this point were “free”

– No user intervention required (beyond buying new chip)

• Recompilation/rewriting could provide even more benefit

– Higher frequency & higher IPC

– Same ISA, different micro-architecture

• Multi-processing pushes parallelism above ISA

– Coarse grained parallelism

• Provide multiple processing elements

– User (or developer) responsible for finding parallelism

• User decides how to use resources

Sources of (Coarse) Parallelism
• Different applications
– MP3 player in background while you work in Office
– Other background tasks: OS/kernel, virus check, etc…
– Piped applications

• gunzip -c foo.gz | grep bar | perl some-script.pl

• Threads within the same application
– Java (scheduling, GC, etc...)
– Explicitly coded multi-threading

• pthreads, MPI, etc…

SMP Machines
• SMP = Symmetric Multi-Processing
– Symmetric = All CPUs have “equal” access to memory

• OS sees multiple CPUs
– Runs one process (or thread) on each CPU

CPU0

CPU1

CPU2

CPU3

MP Workload Benefits

3-wide
OOO
CPU

Task A Task B

4-wide
OOO
CPU

Task A Task B

Benefit

3-wide
OOO
CPU

Task A Task B
3-wide
OOO
CPU

2-wide
OOO
CPU

Task B
Task A2-wide

OOO
CPU

runtime

Assumes you have multiple tasks/programs to run

… If Only One Task Available

3-wide
OOO
CPU

Task A

4-wide
OOO
CPU

Task A
Benefit

3-wide
OOO
CPU

3-wide
OOO
CPU

Task A

2-wide
OOO
CPU

2-wide
OOO
CPU

Task A

runtime

Idle

No benefit over 1 CPU

Performance
degradation!

Benefit of MP Depends on Workload
• Limited number of parallel tasks to run
– Adding more CPUs than tasks provides zero benefit

• For parallel code, Amdahl’s law curbs speedup

parallelizable

1CPU 2CPUs 3CPUs 4CPUs

Hardware Modifications for SMP
• Processor
– Memory interface

• Motherboard
– Multiple sockets (one per CPU)
– Datapaths between CPUs and memory

• Other
– Case: larger (bigger motherboard, better airflow)
– Power: bigger power supply for N CPUs
– Cooling: more fans to remove N CPUs worth of heat

Chip-Multiprocessing (CMP)
• Simple SMP on the same chip
– CPUs now called “cores” by hardware designers
– OS designers still call these “CPUs”

Intel “Smithfield” Block Diagram AMD Dual-Core Athlon FX

On-chip Interconnects (1/5)
• Today, (Core+L1+L2) = “core”
– (L3+I/O+Memory) = “uncore”

• How to interconnect multiple “core”s to “uncore”?

• Possible topologies
– Bus
– Crossbar
– Ring
– Mesh
– Torus

LLC $

Memory
Controller

Core
$

Core
$

Core
$

Core
$

On-chip Interconnects (2/5)
• Possible topologies
– Bus
– Crossbar
– Ring
– Mesh
– Torus

$
Bank 0

Memory
Controller

Core
$

Core
$

Core
$

Core
$

$
Bank 1

$
Bank 2

$
Bank 3

O
ra

cl
e

U
ltr

aS
PA

R
C

T
5

(3
.6

G
H

z,
16

 c
or

es
, 8

 t
hr

ea
ds

 p
er

 c
or

e)

On-chip Interconnects (3/5)
• Possible topologies
– Bus
– Crossbar
– Ring
– Mesh
– Torus

$
Bank 0

Memory
Controller

Core
$

Core
$

Core
$

Core
$

$
Bank 1

$
Bank 2

$
Bank 3

In
te

l S
an

dy
 B

ri
dg

e
(3

.5
G

H
z,

6
co

re
s,

2
th

re
ad

s
pe

r
co

re
)

• 3 ports per switch
• Simple and cheap
• Can be bi-directional to

reduce latency

On-chip Interconnects (4/5)
• Possible topologies
– Bus
– Crossbar
– Ring
– Mesh
– Torus

T
ile

ra
 T

ile
64

 (
86

6M
H

z,
64

 c
or

es
)

Core
$

$
Bank 1

$
Bank 0

Core
$

Core
$

$
Bank 4

Core
$

$
Bank 3

Memory
Controller

Core
$

$
Bank 2

Core
$

$
Bank 7

Core
$

$
Bank 6

Core
$

$
Bank 5

• Up to 5 ports per switch
Tiled organization combines core and cache

On-chip Interconnects (5/5)
• Possible topologies
– Bus
– Crossbar
– Ring
– Mesh
– Torus

• 5 ports per switch
• Can be “folded”

to avoid long links

Core
$

$
Bank 1

$
Bank 0

Core
$

Core
$

$
Bank 4

Core
$

$
Bank 3

Memory
Controller

Core
$

$
Bank 2

Core
$

$
Bank 7

Core
$

$
Bank 6

Core
$

$
Bank 5

Benefits of CMP
• Cheaper than multi-chip SMP
– All/most interface logic integrated on chip

• Fewer chips
• Single CPU socket
• Single interface to memory

– Less power than multi-chip SMP
• Communication on die uses less power than chip to chip

• Efficiency
– Use for transistors instead of wider/more aggressive OoO
– Potentially better use of hardware resources

CMP Performance vs. Power

• 2x CPUs not necessarily equal to 2x performance

• 2x CPUs à ½ power for each

– Maybe a little better than ½ if resources can be shared

• Back-of-the-Envelope calculation:

– 3.8 GHz CPU at 100W

– Dual-core: 50W per Core

– P µ V3: Vorig
3/VCMP

3 = 100W/50W à VCMP = 0.8 Vorig

– f µ V: fCMP = 3.0GHz

Multi-Threading

• Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC
– Poor utilization of transistors

• SMP: 2-4 CPUs, but need independent threads
– Poor utilization as well (if limited tasks)

• {Coarse-Grained,Fine-Grained,Simultaneous}-MT
– Use single large uni-processor as a multi-processor

• Core provide multiple hardware contexts (threads)
– Per-thread PC

– Per-thread ARF (or map table)

– Each core appears as multiple CPUs
• OS designers still call these “CPUs”

Scalar Pipeline

Time

Dependencies limit functional unit utilization

Superscalar Pipeline

Time

Higher performance than scalar, but lower utilization

Chip Multiprocessing (CMP)

Time

Limited utilization when running one thread

Coarse-Grained Multithreading (1/3)

Time

Only good for long latency ops (i.e., cache misses)

Hardw
are Context Sw

itch

Coarse-Grained Multithreading (2/3)

+ Sacrifices a little single thread performance

– Tolerates only long latencies (e.g., L2 misses)

• Thread scheduling policy
– Designate a “preferred” thread (e.g., thread A)

– Switch to thread B on thread A L2 miss

– Switch back to A when A L2 miss returns

• Pipeline partitioning
– None, flush on switch

– Can’t tolerate latencies shorter than twice pipeline depth

– Need short in-order pipeline for good performance

Coarse-Grained Multithreading (3/3)

regfile

D$
I$
B
P

regfile

thread scheduler

L2 miss?

I$
B
P

D$

original pipeline

regfile

Fine-Grained Multithreading (1/3)

Time

Saturated workload → Lots of threads

Unsaturated workload → Lots of stalls

Intra-thread dependencies still limit performance

Fine-Grained Multithreading (2/3)
– Sacrifices significant single-thread performance
+ Tolerates everything

+ L2 misses
+ Mispredicted branches
+ etc...

• Thread scheduling policy
– Switch threads often (e.g., every cycle)
– Use round-robin policy, skip threads with long-latency ops

• Pipeline partitioning
– Dynamic, no flushing
– Length of pipeline doesn’t matter

Fine-Grained Multithreading (3/3)
• (Many) more threads
• Multiple threads in pipeline at once

thread scheduler

regfile

regfile

regfile

regfile

I$
B
P

D$

Simultaneous Multithreading (1/3)

Time

Max utilization of functional units

Simultaneous Multithreading (2/3)

+ Tolerates all latencies

± Sacrifices some single thread performance

‒ Thread scheduling policy
• Round-robin (like Fine-Grained MT)

‒ Pipeline partitioning
• Dynamic

‒ Examples
‒ Pentium4 (hyper-threading): 5-way issue, 2 threads

‒ Alpha 21464: 8-way issue, 4 threads (canceled)

Simultaneous Multithreading (3/3)

regfile

D$
I$
B
P

map table

map tablesthread scheduler

original pipeline

I$
B
P

regfile

D$

Issues for SMT

• Cache interference

– Concern for all MT variants

– Shared memory SPMD threads help here

• Same insns. ® share I$

• Shared data ® less D$ contention

• MT is good for “server” workloads

– SMT might want a larger L2 (which is OK)

• Out-of-order tolerates L1 misses

• Large map table and physical register file

– #maptable-entries = (#threads * #arch-regs)

– #phys-regs = (#threads * #arch-regs) + #in-flight insns

Latency vs. Throughput

• MT trades (single-thread) latency for throughput

– Sharing processor degrades latency of individual threads

– But improves aggregate latency of both threads

– Improves utilization

• Example

– Thread A: individual latency=10s, latency with thread B=15s

– Thread B: individual latency=20s, latency with thread A=25s

– Sequential latency (first A then B or vice versa): 30s

– Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

– But improves total latency by 5s

Benefits of MT depend on workload

CMP vs. MT
• If you wanted to run multiple threads would you build a…

– Chip multiprocessor (CMP): multiple separate pipelines?
– A multithreaded processor (MT): a single larger pipeline?

• Both will get you throughput on multiple threads
– CMP will be simpler, possibly faster clock
– SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP
• CMP is mainly a TLP engine

• Do both (CMP of MTs), Example: Sun UltraSPARC T1
– 8 processors, each with 4-threads (fine-grained threading)
– 1Ghz clock, in-order, short pipeline
– Designed for power-efficient “throughput computing”

Combining MP Techniques (1/2)

• System can have SMP, CMP, and SMT at the same time

• Example machine with 32 threads

– Use 2-socket SMP motherboard with two chips

– Each chip with an 8-core CMP

– Where each core is 2-way SMT

• Makes life difficult for the OS scheduler

– OS needs to know which CPUs are…

• Real physical processor (SMP): highest independent performance

• Cores in same chip: fast core-to-core comm., but shared resources

• Threads in same core: competing for resources

– Distinct apps. scheduled on different CPUs

– Cooperative apps. (e.g., pthreads) scheduled on same core

– Use SMT as last choice (or don’t use for some apps.)

Combining MP Techniques (2/2)

Scalability Beyond the Machine

Server Racks

Datacenters (1/2)

Datacenters (2/2)

