COMP 590-154:
Computer Architecture

Multi-{Socket,Core,Thread}

* Keep pushing IPC and/or frequenecy
— Design complexity (time to market)
— Cooling (cost)
— Power delivery (cost)

* Possible, but too costly

Woatts /IPC

Power has been growing
exponentially as well
| 00 - . 4)=

Diminishing returns w.r.t.
larger instruction window,
higher issue-width

Single-Issue Superscalar Superscalar Limits
Pipelined Out-of-Order Out-of-Order
(Today) (Hypothetical-

Aggressive)

’

Performance Made sense to go
Superscalar/OOO:
good ROI
Very little gain for
substantial effort
“Effort”
Scalar Moderate-Pipe Very-Deep-Pipe
In-Order Superscalar/OOO Aggressive

Superscalar/OOO

* All performance gains up to this point were “free”

— No user intervention required (beyond buying new chip)

* Recompilation/rewriting could provide even more benefit

— Higher frequency & higher IPC
— Same ISA, different micro-architecture

* Multi-processing pushes parallelism above ISA
— Coarse grained parallelism
* Provide multiple processing elements

— User (or developer) responsible for finding parallelism

 User decides how to use resources

* Different applications
— MP3 player in background while you work in Office
— Other background tasks: OS/kernel, virus check, etc...
— Piped applications
e gunzip -c foo.gz | grep bar | perl some-script.pl
* Threads within the same application
— Java (scheduling, GC, etc...)

— Explicitly coded multi-threading
* pthreads, MPI, etc...

* SMP = Symmetric Multi-Processing
— Symmetric = All CPUs have “equal” access to memory

* OS sees multiple CPUs

— Runs one process (or thread) on each CPU

CPU,

CPU,
CPU,

CPU;,

29009060
R

WYY

runtime

e e e e e e e e e e e r r e - —-———— >
Task A Task B
I | .
I i i
Task A Task B
Benefit
Task A

v

TS
- TeskB

Task A

runtime

il et >
Task A
I R
| >
Task A
:i Benefit
Task A »| No benefit over | CPU
Task A |
-: Performance
degradation!

* Limited number of parallel tasks to run

— Adding more CPUs than tasks provides zero benefit

* For parallel code, Amdahl’s law curbs speedup

parallelizable
—

|CPU 2CPUs 3CPUs 4CPUs

* Processor

— Memory interface

e Motherboard

— Multiple sockets (one per CPU)
— Datapaths between CPUs and memory

* Other
— Case: larger (bigger motherboard, better airflow)
— Power: bigger power supply for N CPUs
— Cooling: more fans to remove N CPUs worth of heat

* Simple SMP on the same chip
— CPUs now called “cores” by hardware designers
— OS designers still call these “CPUs”

System Bus

[]
BTB & I-TLB BTB & |-TLB

Decoder Decoder

§g Trace Cache 5

§§ Trace Cache

Rename/Alloc Rename/Alloc

uop Queues uop Queues

JOIUOD PUE ayoeD 21
JONUOD puE 8yoe) 21

Schedulers Schedulers
FP RF | | Integer RF FPRF @ | Integer RF
EEEEMNY | ppmjy | CEoesi

L1 D-Cache and D-TLB L1 D-Cache and D-TLB

Intel “Smithfield” Block Diagram AMD Dual-Core Athlon FX

* Today, (Core+L1+L2) = “core”

— (L3+I/O+Memory) = “uncore”

* How to interconnect multiple “core”s to “uncore”?

* Possible topologies
— Bus
— Crossbar
— Ring
— Mesh
— Torus

LLC $

Memory
Controller

Oracle UltraSPARC TS5 (3.6GHz,

* Possible topologies
— Bus

— Crossbar

I ' Bank 2
e LISEDESTIT] -
PARCISPARCIPWHR . -~ 1u | [BoARe[oRARC |
C‘bre Ct?ﬂi e [l s .
— T ok Bank 3
. Memory
Controller

|6 cores, 8 threads per core)

Intel Sandy Bridge (3.5GHz,
6 cores, 2 threads per core)

* Possible topologies
— Bus
— Crossbar
— Ring
Memory
— Mesh Controller

— Torus

: * 3 ports per switch

- * Simple and cheap

* (Can be bi-directional to
reduce latency

L3 Cachei- 1]

* Possible topologies

Memory
Controller

— Bus

— Crossbar

— Ring
— Mesh
— Torus

TWT??WTT
2 1 0 e e e e

(52402 49 ‘ZHIN998) #93]! L B

()
-
O
(qe)
O
i®)
-
(qV)
Q
. -
O
O
Vg
()
=
O
&
O
O
-
O
o
O
U
C
(O
o]0]

Tiled or

Possible topologies

— Bus
Memory
— Crossbar (\—iontroller
: 7
— Ring <
— Mesh
— Torus

5 ports per switch
Can be “folded”

to avoid long links

* Cheaper than multi-chip SMP

— All/most interface logic integrated on chip

* Fewer chips
» Single CPU socket
e Single interface to memory

— Less power than multi-chip SMP

 Communication on die uses less power than chip to chip
* Efficiency
— Use for transistors instead of wider/more aggressive 000
— Potentially better use of hardware resources

e 2x CPUs not necessarily equal to 2x performance
e 2x CPUs = % power for each

— Maybe a little better than % if resources can be shared

* Back-of-the-Envelope calculation:
— 3.8 GHz CPU at 100W
— Dual-core: 50W per Core

— P oc V3: V,3,3/Vowp® = 100W/S0W > Ve = 0.8V

orig

* Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC

— Poor utilization of transistors

* SMP: 2-4 CPUs, but need independent threads

— Poor utilization as well (if limited tasks)

e ICoarse-Grained, Fine-Grained,Simultaneous}-MT

— Use single large uni-processor as a multi-processor
e Core provide multiple hardware contexts (threads)
— Per-thread PC
— Per-thread ARF (or map table)
— Each core appears as multiple CPUs
e OS designers still call these “CPUs”

v

Time

Time

v

Time

Time

Hardware Context Switch

+ Sacrifices a little single thread performance
— Tolerates only long latencies (e.g., L2 misses)

* Thread scheduling policy
— Designate a “preferred” thread (e.g., thread A)
— Switch to thread B on thread A L2 miss
— Switch back to A when A L2 miss returns
* Pipeline partitioning
— None, flush on switch
— Can’t tolerate latencies shorter than twice pipeline depth
— Need short in-order pipeline for good performance

original pipeline

regfile

G

’kl

L2 miss?

Time

o
>

Saturated workload = Lots of threads

Unsaturated workload = Lots of stalls

— Sacrifices significant single-thread performance

+ Tolerates everything

+ L2 misses

+ Mispredicted branches

+ etc...
* Thread scheduling policy

— Switch threads often (e.g., every cycle)

— Use round-robin policy, skip threads with long-latency ops
* Pipeline partitioning

— Dynamic, no flushing

— Length of pipeline doesn’t matter

* (Many) more threads

* Multiple threads in pipeline at once

thread scheduler

(-

v

Time

Tolerates all latencies

Sacrifices some single thread performance

Thread scheduling policy

* Round-robin (like Fine-Grained MT)
Pipeline partitioning

* Dynamic

Examples

— Pentium4 (hyper-threading): 5-way issue, 2 threads
— Alpha 21464: 8-way issue, 4 threads (canceled)

original pipeline map table

\ 4

H

M
U

y 3

thread scheduler map tables

* Cache interference

— Concern for all MT variants

— Shared memory SPMD threads help here
e Same insns. — share IS
* Shared data — less DS contention
 MT is good for “server” workloads

— SMT might want a larger L2 (which is OK)

e Qut-of-order tolerates L1 misses

e Large map table and physical register file
— #maptable-entries = (#threads * #arch-regs)
— #phys-regs = (#threads * #arch-regs) + #in-flight insns

 MT trades (single-thread) latency for throughput
— Sharing processor degrades latency of individual threads

— But improves aggregate latency of both threads
— Improves utilization

* Example
— Thread A: individual latency=10s, latency with thread B=15s
— Thread B: individual latency=20s, latency with thread A=25s
— Sequential latency (first A then B or vice versa): 30s
— Parallel latency (A and B simultaneously): 25s
— MT slows each thread by 5s
— But improves total latency by 5s

* |If you wanted to run multiple threads would you build a...
— Chip multiprocessor (CMP): multiple separate pipelines?
— A multithreaded processor (MT): a single larger pipeline?
* Both will get you throughput on multiple threads
— CMP will be simpler, possibly faster clock

— SMT will get you better performance (IPC) on a single thread
 SMT is basically an ILP engine that converts TLP to ILP
e CMP is mainly a TLP engine

Do both (CMP of MTs), Example: Sun UltraSPARC T1
— 8 processors, each with 4-threads (fine-grained threading)
— 1Ghz clock, in-order, short pipeline
— Designed for power-efficient “throughput computing”

e System can have SMP, CMP, and SMT at the same time

* Example machine with 32 threads
— Use 2-socket SMP motherboard with two chips
— Each chip with an 8-core CMP
— Where each core is 2-way SMT

 Makes life difficult for the OS scheduler

— OS needs to know which CPUs are...
* Real physical processor (SMP): highest independent performance
e Cores in same chip: fast core-to-core comm., but shared resources
* Threads in same core: competing for resources

— Distinct apps. scheduled on different CPUs
— Cooperative apps. (e.g., pthreads) scheduled on same core
— Use SMT as last choice (or don’t use for some apps.)

AR LG R T T g P

—

\

e

A gy T o B S

R~

-

E .
¢
- . 4
»
t\

> PRI I I I I I T L

L neraTon

Utility Power A .o

Input Automatic Toansfer

hifled Water
Switch Put

mp

Chiller
‘ Chilled Watee
Pump

= arvel o Chulber

Transfonmes

Intake Valve
% ‘Water Mater

=

-
onchenser Wiles

Fa Outside
Pump

Water Supply

Watid
Boaster Pump

N
Water
Boostor Pump

