
COMP 590-154:
Computer Architecture

Prefetching

Prefetching (1/3)
• Fetch block ahead of demand
• Target compulsory, capacity, (& coherence) misses
– Why not conflict?

• Big challenges:
– Knowing “what” to fetch

• Fetching useless blocks wastes resources
– Knowing “when” to fetch

• Too early à clutters storage (or gets thrown out before use)
• Fetching too late à defeats purpose of “pre”-fetching

Prefetching (2/3)
• Without prefetching:

• With prefetching:

• Or:
Prefetch

Prefetch

Load

L1 L2

Data

DRAM

Total Load-to-Use Latency

DataLoad

Much improved Load-to-Use Latency

Somewhat improved Latency

DataLoad

Prefetching must be accurate and timely

time

Prefetching (3/3)

• Without prefetching:

• With prefetching: Run

Load

time

Prefetching removes loads from critical path

Common “Types” of Prefetching
• Software
• Next-Line, Adjacent-Line
• Next-N-Line
• Stream Buffers
• Stride
• “Localized” (e.g., PC-based)
• Pointer
• Correlation

Software Prefetching (1/4)
• Compiler/programmer places prefetch instructions

• Put prefetched value into…
– Register (binding, also called “hoisting”)

• May prevent instructions from committing

– Cache (non-binding)
• Requires ISA support
• May get evicted from cache before demand

A

CB

R3 = R1+4

R1 = [R2]

Software Prefetching (2/4)

A

CB
R1 = [R2]
R3 = R1+4

(Cache misses in red) Hopefully the load miss
is serviced by the time

we get to the consumer

R1 = R1- 1R1 = R1- 1

Hoisting must
be aware of

dependencies

A

CB
R1 = [R2]
R3 = R1+4

PREFETCH[R2]

Using a prefetch instruction
can avoid problems with

data dependencies

Software Prefetching (3/4)

for (I = 1; I < rows; I++)
{

for (J = 1; J < columns; J++)
{

prefetch(&x[I+1,J]);
sum = sum + x[I,J];

}
}

Software Prefetching (4/4)
• Pros:
– Gives programmer control and flexibility
– Allows time for complex (compiler) analysis
– No (major) hardware modifications needed

• Cons:
– Hard to perform timely prefetches

• At IPC=2 and 100-cycle memory à move load 200 inst. earlier
• Might not even have 200 inst. in current function

– Prefetching earlier and more often leads to low accuracy
• Program may go down a different path

– Prefetch instructions increase code footprint
• May cause more I$ misses, code alignment issues

Hardware Prefetching (1/3)

• Hardware monitors memory accesses
– Looks for common patterns

• Guessed addresses are placed into prefetch queue
– Queue is checked when no demand accesses waiting

• Prefetchers look like READ requests to the hierarchy
– Although may get special “prefetched” flag in the state bits

• Prefetchers trade bandwidth for latency
– Extra bandwidth used only when guessing incorrectly

– Latency reduced only when guessing correctly

No need to change software

Processor

Hardware Prefetching (2/3)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Main Memory (DRAM)

L3 Cache (LLC)

Potential
Prefetcher
Locations

Processor

Hardware Prefetching (3/3)

• Real CPUs have multiple prefetchers
– Usually closer to the core (easier to detect patterns)
– Prefetching at LLC is hard (cache is banked and hashed)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

L3 Cache (LLC)

Intel Core2
Prefetcher
Locations

Next-Line (or Adjacent-Line) Prefetching
• On request for line X, prefetch X+1 (or X^0x1)
– Assumes spatial locality

• Often a good assumption

– Should stop at physical (OS) page boundaries

• Can often be done efficiently
– Adjacent-line is convenient when next-level block is bigger
– Prefetch from DRAM can use bursts and row-buffer hits

• Works for I$ and D$
– Instructions execute sequentially
– Large data structures often span multiple blocks

Simple, but usually not timely

Next-N-Line Prefetching

• On request for line X, prefetch X+1, X+2, …, X+N

– N is called “prefetch depth” or “prefetch degree”

• Must carefully tune depth N. Large N is …

– More likely to be useful (correct and timely)

– More aggressive à more likely to make a mistake

• Might evict something useful

– More expensive à need storage for prefetched lines

• Might delay useful request on interconnect or port

Still simple, but more timely than Next-Line

Stream Buffers (1/3)
• What if we have multiple inter-twined streams?
– A, B, A+1, B+1, A+2, B+2, …

• Can use multiple stream buffers to track streams
– Keep next-N available in buffer
– On request for line X, shift buffer and fetch X+N+1 into it

• Can extend to “quasi-sequential” stream buffer
– On request Y in [X…X+N], advance by Y-X+1
– Allows buffer to work when items are skipped
– Requires expensive (associative) comparison

Stream Buffers (2/3)

Figures from Jouppi “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” ISCA’90

Stream Buffers (3/3)

Can support multiple streams in parallel

Stride Prefetching (1/2)

• Access patterns often follow a stride
– Accessing column of elements in a matrix
– Accessing elements in array of structs

• Detect stride S, prefetch depth N
– Prefetch X+1·S, X+2·S, …, X+N·S

Column in matrix

Elements in array of structs

Stride Prefetching (2/2)
• Must carefully select depth N
– Same constraints as Next-N-Line prefetcher

• How to determine if A[i] à A[i+1] or X à Y ?
– Wait until A[i+2] (or more)
– Can vary prefetch depth based on confidence

• More consecutive strided accesses à higher confidence

New access to
A+3N

Stride Count

A+2N N 2

+ A+4N+=

Update count

>2 Do prefetch?

Last Addr

“Localized” Stride Prefetchers (1/2)
• What if multiple strides are interleaved?
– No clearly-discernible stride
– Could do multiple strides like stream buffers

• Expensive (must detect/compare many strides on each access)

– Accesses to structures usually localized to an instruction

Miss pattern looks like:
A, X, Y, A+N, X+N, Y+N, A+2N, X+2N, Y+2N, …

(X-A)

(Y-X)

(A+N-Y)

Use an array of strides, indexed by PC

(X-A)

(Y-X)

(A+N-Y)

(X-A)

(Y-X)

(A+N-Y)

Load R1 = [R2]

Load R3 = [R4]

Store [R6] = R5

Add R5, R1, R3

“Localized” Stride Prefetchers (2/2)

• Store PC, last address, last stride, and count in RPT

• On access, check RPT (Reference Prediction Table)
– Same stride? à count++ if yes, count-- or count=0 if no

– If count is high, prefetch (last address + stride*N)

PCa: 0x409A34 Load R1 = [R2]

PCb: 0x409A38 Load R3 = [R4]

PCc: 0x409A40 Store [R6] = R5

0x409

Tag Last Addr Stride Count

0x409

0x409

A+3N N 2

X+3N N 2

Y+2N N 1

If confident
about the stride
(count > Cmin),

prefetch
(A+4N)

+

Other Patterns
• Sometimes accesses are regular, but no strides
– Linked data structures (e.g., lists or trees)

A B C D E F Linked-list traversal

F
A B

C

D

E

Actual memory
layout

(no chance to detect a stride)

Pointer Prefetching (1/2)

Data filled on cache miss (512 bits of data)

1 4128 90120230 901207588029 0 14 4128

Nope Nope Maybe! Maybe!

struct bintree_node_t {
int data1;
int data2;
struct bintree_node_t * left;
struct bintree_node_t * right;

};

This allows you to walk the tree
(or other pointer-based data structures

which are typically hard to prefetch)

Pointers usually “look different”

Go ahead and prefetch these
(needs some help from the TLB)

Nope Nope Nope Nope

90120230 90120758

Pointer Prefetching (2/2)
• Relatively cheap to implement
– Don’t need extra hardware to store patterns

• Limited lookahead makes timely prefetches hard
– Can’t get next pointer until fetched data block

X Access Latency
Access Latency

Access Latency

Stride Prefetcher:

A Access Latency
B Access Latency

C Access Latency

Pointer Prefetcher:

X+N
X+2N

Pair-wise Temporal Correlation (1/2)
• Accesses exhibit temporal correlation
– If E followed D in the past à if we see D, prefetch E

Correlation Table

D

F

A

B

C

E

E

?

B

C

D

F

A B C D E F

Linked-list traversal

F
A B

C

D

E

Actual memory layout

10

00

11

11

11

01

D

F

A

B

C

E

Can use recursively to get more lookahead J

Pair-wise Temporal Correlation (2/2)
• Many patterns more complex than linked lists
– Can be represented by a Markov Model
– Required tracking multiple potential successors

• Number of candidates is called breadth

A B C

D E F
1.0 .33 .5

.2

1.0.6
.2

.67

.6

.5

.2

.2

Correlation Table

D

F

A

B

C

E

C

E

B

C

D

A

11

11

11

11

11

11

E

?

C

?

F

?

01

00

01

00

10

00

D

F

A

B

C

E

Recursive breadth & depth grows exponentially L

Markov Model

Increasing Correlation History Length
• Longer history enables more complex patterns

– Use history hash for lookup
– Increases training time

A

B C

D E F G

DFS traversal: ABDBEBACFCGCA A B

B D

D B

B E

E B

B A

A C

D

B

E

B

A

C

F

Much better accuracy J, exponential storage cost L

Spatial Correlation (1/2)

• Irregular layout à non-strided
• Sparse à can’t capture with cache blocks
• But, repetitive à predict to improve MLP

Database Page in Memory (8kB)

page header

tuple data

tuple slot index

M
em

or
y

Large-scale repetitive spatial access patterns

Spatial Correlation (2/2)
• Logically divide memory into regions
• Identify region by base address
• Store spatial pattern (bit vector) in correlation table

Region A

Region B

Correlation Table
PCx: A’

PCy: B’ 110…1010001…111

110…0001101…111

PCx

PCy

+ To prefetch
Queue

Evaluating Prefetchers
• Compare against larger caches
– Complex prefetcher vs. simple prefetcher with larger cache

• Primary metrics
– Coverage: prefetched hits / base misses
– Accuracy: prefetched hits / total prefetches
– Timeliness: latency of prefetched blocks / hit latency

• Secondary metrics
– Pollution: misses / (prefetched hits + base misses)
– Bandwidth: total prefetches + misses / base misses
– Power, Energy, Area...

Hardware Prefetcher Design Space

• What to prefetch?
– Predictors regular patterns (x, x+8, x+16, …)

– Predicted correlated patterns (A…B->C, B..C->J, A..C->K, …)

• When to prefetch?
– On every reference à lots of lookup/prefetcher overhead

– On every miss à patterns filtered by caches

– On prefetched-data hits (positive feedback)

• Where to put prefetched data?
– Prefetch buffers
– Caches

What’s Inside Today’s Chips
• Data L1
– PC-localized stride predictors
– Short-stride predictors within block à prefetch next block

• Instruction L1
– Predict future PC à prefetch

• L2
– Stream buffers
– Adjacent-line prefetch

