COMP 590-154: Computer Architecture Prefetching

Prefetching (1/3)

- Fetch block ahead of *demand*
- Target compulsory, capacity, (& coherence) misses
 - Why not conflict?
- Big challenges:
 - Knowing "what" to fetch
 - Fetching useless blocks wastes resources
 - Knowing "when" to fetch
 - Too early \rightarrow clutters storage (or gets thrown out before use)
 - Fetching too late \rightarrow defeats purpose of "pre"-fetching

Prefetching (2/3)

• Without prefetching:

Prefetching (3/3)

• Without prefetching:

• With prefetching:

Prefetching removes loads from critical path

Common "Types" of Prefetching

- Software
- Next-Line, Adjacent-Line
- Next-N-Line
- Stream Buffers
- Stride
- "Localized" (e.g., PC-based)
- Pointer
- Correlation

Software Prefetching (1/4)

- Compiler/programmer places prefetch instructions
- Put prefetched value into...
 - Register (binding, also called "<u>hoisting</u>")
 - May prevent instructions from committing
 - Cache (non-binding)
 - Requires ISA support
 - May get evicted from cache before demand

Software Prefetching (2/4)

(Cache misses in red)

Hopefully the load miss is serviced by the time we get to the consumer

Using a prefetch instruction can avoid problems with data dependencies

Software Prefetching (3/4)

```
for (I = 1; I < rows; I++)
{
    for (J = 1; J < \text{columns}; J++)
    {
         prefetch(&x[I+1,J]);
         sum = sum + x[I,J];
    }
```

Software Prefetching (4/4)

- Pros:
 - Gives programmer control and flexibility
 - Allows time for complex (compiler) analysis
 - No (major) hardware modifications needed
- Cons:
 - Hard to perform timely prefetches
 - At IPC=2 and 100-cycle memory \rightarrow move load 200 inst. earlier
 - Might not even have 200 inst. in current function
 - Prefetching earlier and more often leads to low accuracy
 - Program may go down a different path
 - Prefetch instructions increase code footprint
 - May cause more I\$ misses, code alignment issues

Hardware Prefetching (1/3)

- Hardware monitors memory accesses

 Looks for common patterns
- Guessed addresses are placed into <u>prefetch queue</u>
 Queue is checked when no demand accesses waiting
- Prefetchers look like READ requests to the hierarchy
 - Although may get special "prefetched" flag in the state bits
- Prefetchers trade bandwidth for latency
 - Extra bandwidth used *only* when guessing incorrectly
 - Latency reduced *only* when guessing correctly

No need to change software

Hardware Prefetching (2/3)

Hardware Prefetching (3/3)

- Real CPUs have multiple prefetchers
 - Usually closer to the core (easier to detect patterns)
 - Prefetching at LLC is hard (cache is banked and hashed)

Next-Line (or Adjacent-Line) Prefetching

- On request for line X, prefetch X+1 (or X^0x1)
 - Assumes spatial locality
 - Often a good assumption
 - Should stop at physical (OS) page boundaries
- Can often be done efficiently
 - Adjacent-line is convenient when next-level block is bigger
 - Prefetch from DRAM can use bursts and row-buffer hits
- Works for I\$ and D\$
 - Instructions execute sequentially
 - Large data structures often span multiple blocks

Simple, but usually not timely

Next-N-Line Prefetching

- On request for line X, prefetch X+1, X+2, ..., X+N
 N is called "<u>prefetch depth</u>" or "<u>prefetch degree</u>"
- Must carefully tune depth N. Large N is ...
 - More likely to be useful (correct and timely)
 - More aggressive \rightarrow more likely to make a mistake
 - Might evict something useful
 - More expensive \rightarrow need storage for prefetched lines
 - Might delay useful request on interconnect or port

Still simple, but more timely than Next-Line

Stream Buffers (1/3)

- What if we have multiple inter-twined streams?
 A, B, A+1, B+1, A+2, B+2, ...
- Can use multiple <u>stream buffers</u> to track streams
 Keep next-N available in buffer
 - On request for line X, shift buffer and fetch X+N+1 into it
- Can extend to "quasi-sequential" stream buffer
 - On request Y in [X...X+N], advance by Y-X+1
 - Allows buffer to work when items are skipped
 - Requires expensive (associative) comparison

Stream Buffers (2/3)

Stream Buffers (3/3)

Can support multiple streams in parallel

Stride Prefetching (1/2)

Column in matrix

- Access patterns often follow a <u>stride</u>
 - Accessing column of elements in a matrix
 - Accessing elements in array of structs
- Detect stride S, prefetch depth N
 - Prefetch X+1·S, X+2·S, …, X+N·S

Stride Prefetching (2/2)

- Must carefully select depth N
 - Same constraints as Next-N-Line prefetcher
- How to determine if $A[i] \rightarrow A[i+1]$ or $X \rightarrow Y$?
 - Wait until A[i+2] (or more)
 - Can vary prefetch depth based on confidence
 - More consecutive strided accesses \rightarrow higher confidence

"Localized" Stride Prefetchers (1/2)

- What if multiple strides are interleaved?
 - No clearly-discernible stride
 - Could do multiple strides like stream buffers
 - Expensive (must detect/compare many strides on each access)
 - Accesses to structures usually *localized* to an instruction

"Localized" Stride Prefetchers (2/2)

- Store PC, last address, last stride, and count in RPT
- On access, check <u>RPT (Reference Prediction Table)</u>
 - Same stride? \rightarrow count++ if yes, count-- or count=0 if no
 - If count is high, prefetch (last address + stride*N)

Other Patterns

- Sometimes accesses are regular, but no strides
 - Linked data structures (e.g., lists or trees)

Actual memory layout

(no chance to detect a stride)

Pointer Prefetching (1/2)

Pointers usually "look different"

Pointer Prefetching (2/2)

- Relatively cheap to implement
 - Don't need extra hardware to store patterns
- Limited *lookahead* makes timely prefetches hard
 - Can't get next pointer until fetched data block

Stride Prefetcher:

Pair-wise Temporal Correlation (1/2)

Accesses exhibit <u>temporal correlation</u>
 If E followed D in the past → if we see D, prefetch E

Linked-list traversal

Actual memory layout

Can use recursively to get more lookahead 🙂

Pair-wise Temporal Correlation (2/2)

- Many patterns more complex than linked lists
 - Can be represented by a Markov Model
 - Required tracking *multiple* potential successors
- Number of candidates is called *breadth*

Recursive breadth & depth grows exponentially 😕

Increasing Correlation History Length

- Longer history enables more complex patterns
 - Use history hash for lookup
 - Increases training time

DFS traversal: ABDBEBACFCGCA

Much better accuracy ⁽²⁾, exponential storage cost ⁽³⁾

Spatial Correlation (1/2)

- Irregular layout \rightarrow non-strided
- Sparse \rightarrow can't capture with cache blocks
- But, repetitive \rightarrow predict to improve MLP

Large-scale *repetitive* spatial access patterns

Spatial Correlation (2/2)

- Logically divide memory into regions
- Identify region by base address
- Store spatial pattern (bit vector) in correlation table

Evaluating Prefetchers

- Compare against larger caches
 - Complex prefetcher vs. simple prefetcher with larger cache
- Primary metrics
 - *Coverage*: prefetched hits / base misses
 - <u>Accuracy</u>: prefetched hits / total prefetches
 - <u>Timeliness</u>: latency of prefetched blocks / hit latency
- Secondary metrics
 - <u>Pollution</u>: misses / (prefetched hits + base misses)
 - Bandwidth: total prefetches + misses / base misses
 - Power, Energy, Area...

Hardware Prefetcher Design Space

- What to prefetch?
 - Predictors regular patterns (x, x+8, x+16, ...)
 - Predicted correlated patterns (A...B->C, B..C->J, A..C->K, ...)
- When to prefetch?
 - On every reference \rightarrow lots of lookup/prefetcher overhead
 - On every miss \rightarrow patterns filtered by caches
 - On prefetched-data hits (positive feedback)
- Where to put prefetched data?
 - Prefetch buffers
 - Caches

What's Inside Today's Chips

- Data L1
 - PC-localized stride predictors
 - Short-stride predictors within block ightarrow prefetch next block
- Instruction L1
 - Predict future PC \rightarrow prefetch
- L2
 - Stream buffers
 - Adjacent-line prefetch