
COMP 590-154:
Computer Architecture

Branch Prediction

Fragmentation due to Branches
• Fetch group is aligned, cache line size > fetch group
– Still limit fetch width if branch is “taken”
– If we know “not taken”, width not limited

D
ecoder

Tag Inst Inst Inst Inst
Tag Inst Branch Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Inst

X X

Fragmentation due to Branches
• Fetch group is aligned, cache line size > fetch group
– Still limit fetch width if branch is “taken”
– If we know “not taken”, width not limited

D
ecoder

Tag Inst Inst Inst Inst
Tag Inst Branch Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Inst

X X

Toxonomy of Branches
• Direction:
– Conditional vs. Unconditional

• Target:
– PC-encoded

• PC-relative
• Absolute offset

– Computed (target derived from register)

Need direction and target to find next fetch group

Branch Prediction Overview
• Use two hardware predictors
– Direction predictor guesses if branch is taken or not-taken
– Target predictor guesses the destination PC

• Predictions are based on history
– Use previous behavior as indication of future behavior
– Use historical context to disambiguate predictions

Where Are the Branches?
• To predict a branch, must find the branch

L1-I
PC

1001010101011010101001 0101001010110101001010 0101010101101010010010 0000100100111001001010

Where is the branch in the fetch group?

Simplistic Fetch Engine

L1-I

PD PD PD PD
Dir
Pred

Target
Pred

Branch’s PC

+

sizeof(inst)

Fetch PC

Huge latency (reduces clock frequency)

Branch Identification

L1-I

Dir
Pred

Target
Pred

Branch’s PC+

sizeof(inst)

Store 1 bit per
inst, set if inst

is a branch

partial-decode
logic removed

Predecode branches on fill from L2

High latency (L1-I on the critical path)

Line Granularity
• Predict fetch group without location of branches
– With one branch in fetch group, does it matter where it is?

X
X
T
X
X
N
X
X

T
N

One predictor entry
per instruction PC

One predictor entry
per fetch group

Predicting by Line

L1-I

br1 br2
Dir
Pred

Target
Pred

+

sizeof($-line)

Correct
Dir Pred

Correct
Target Predbr1 br2

Cache Line address

N N N --

X Y

N T T Y

T -- T X

This is still challenging: we may
need to choose between multiple

targets for the same cache line

Latency determined by branch predictor

Multiple Branch Prediction

Dir PredTarget Pred

L1-I

N N N Taddr0 addr1 addr2 addr3

Scan for
1st “T”

0 1

+
LSBs of PC

sizeof($-line)

no LSBs of PC

PC

Direction vs. Target Prediction
• Direction: 0 or 1
• Target: 32- or 64-bit value
• Turns out targets are generally easier to predict
– Don’t need to predict Not-taken target
– Taken target doesn’t usually change

• Only need to predict taken-branch targets
• Prediction is really just a “cache”
– Branch Target Buffer (BTB)

Target
Pred

+

sizeof(inst)

PC

Branch Target Buffer (BTB)

V BIA BTA

Branch PC

Branch Target
Address

=

Valid Bit

Hit?

Branch Instruction
Address (Tag)

Next Fetch PC

Set-Associative BTB

V tag target

Branch PC

=

V tag target V tag target

= =

Next PC

Making BTBs Cheaper
• Branch prediction is permitted to be wrong
– Processor must have ways to detect mispredictions
– Correctness of execution is always preserved
– Performance may be affected

Can tune BTB accuracy based on cost

BTB w/Partial Tags

00000000cfff9810

00000000cfff9824

00000000cfff984c

v 00000000cfff981 00000000cfff9704

v 00000000cfff982 00000000cfff9830

v 00000000cfff984 00000000cfff9900

00000000cfff9810

00000000cfff9824

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00001111beef9810

Fewer bits to compare, but prediction may alias

BTB w/PC-offset Encoding

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00000000cfff984c

v f981 ff9704

v f982 ff9830

v f984 ff9900

00000000cf ff9900

If target too far or PC rolls over, will mispredict

BTB Miss?

• Dir-Pred says “taken”

• Target-Pred (BTB) misses
– Could default to fall-through PC (as if Dir-Pred said N-t)

• But we know that’s likely to be wrong!

• Stall fetch until target known … when’s that?
– PC-relative: after decode, we can compute target

– Indirect: must wait until register read/exec

Subroutine Calls

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

C: 0xFFB0: CALL printf

P: 0x1000: (start of printf)

0x1000FC31

0x1000FD01

0x1000FFB1

BTB can easily predict target of calls

Subroutine Returns

P: 0x1000: ST $RA à [$sp]

0x1B98: LD $tmp ß [$sp]

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

A’:0xFC38: CMP $ret, 0

B’:0xFD0C: CMP $ret, 0

0x1B9C: RETN $tmp

0xFC381B901

X

BTB can’t predict return for multiple call sites

Return Address Stack (RAS)
• Keep track of call stack

A: 0xFC34: CALL printf
FC38

D004P: 0x1000: ST $RA à [$sp]
…

0x1B9C: RETN $tmp

FC38

BTB

A’:0xFC38: CMP $ret, 0

FC38

Return Address Stack Overflow
1. Wrap-around and overwrite

• Will lead to eventual misprediction after four pops
2. Do not modify RAS

• Will lead to misprediction on next pop

FC90 top of stack

64AC: CALL printf

64B0
???

421C

48C8

7300

Branches Have Locality
• If a branch was previously taken…
– There’s a good chance it’ll be taken again

for(i=0; i < 100000; i++)
{

/* do stuff */
}

This branch will be taken
99,999 times in a row.

Simple Direction Predictor
• Always predict N-t
– No fetch bubbles (always just fetch the next line)
– Does horribly on loops

• Always predict T
– Does pretty well on loops
– What if you have if statements?

p = calloc(num,sizeof(*p));
if(p == NULL)

error_handler(); This branch is practically
never taken

Last Outcome Predictor
• Do what you did last time

0xDC08: for(i=0; i < 100000; i++)
{

0xDC44: if((i % 100) == 0)
tick();

0xDC50: if((i & 1) == 1)
odd();

}

T

N

Misprediction Rates?

0xDC08:TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?
2 / 100,000

TN
NT

0xDC44:TTTTT ... TNTTTTT ... TNTTTTT ...

2 / 100
0xDC50:TNTNTNTNTNTNTNTNTNTNTNTNTNTNT…

2 / 2

99.998%
Prediction

Rate

98.0%

0.0%

Saturating Two-Bit Counter

0 1

FSM for Last-Outcome
Prediction

0 1

2 3

FSM for 2bC
(2-bit Counter)

Predict N-t

Predict T

Transition on T outcome

Transition on N-t outcome

Example

2
T

ü

3

T

3

T

ü ü

…3

N

û

N

1

û

T

0

û

0

T

1

T T T T
…

T

1 1 1 1

û ü ü ü ü ü

T

1

ü

T
…1

ü

0

T

1

T

2

T

3

T

3

T
… 3

T

û ü ü ü üû

Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!
DC08: 99.999% DC44: 99.0%

2x reduction in misprediction rate

Typical Organization of 2bC Predictor

PC hash
32 or 64 bits

log2 n bits

n entries/counters

Prediction

FSM
Update
Logic

table update

Actual outcome

Typical Branch Predictor Hash
• Take the log2n least significant bits of PC
• May need to ignore some bits
– In RISC, insns. are typically 4 bytes wide

• Low-order bits zero

– In CISC (ex. x86), insns. can start anywhere
• Probably don’t want to shift

Dealing with Toggling Branches
• Branch at 0xDC50 changes on every iteration
– 1bc and 2bc don’t do too well (50% at best)
– But it’s still obviously predictable

• Why?
– It has a repeating pattern: (NT)*
– How about other patterns? (TTNTN)*

• Use branch correlation
– Branch outcome is often related to previous outcome(s)

Track the History of Branches (1/2)

PC Previous Outcome

1
Counter if prev=0

Counter if prev=1

Track the History of Branches (2/2)

PC Previous Outcome

1
Counter if prev=0

3 0 Counter if prev=1

1 3 3

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 prediction = T3

prev = 1 3 prediction = T3

prev = 1 3 prediction = T2

û

prev = 0 3 prediction = T2

Deeper History Covers More Patterns
• Counters learn “pattern” of prediction

PC

0 310 1 3 1 0 02 2

Previous 3 Outcomes Counter if prev=000

Counter if prev=001

Counter if prev=010

Counter if prev=111

001 à 1; 011 à 0; 110 à 0; 100 à 1
00110011001… (0011)*

Predictor Organizations

PC Hash

Different pattern for
each branch PC

PC Hash

Shared set of
patterns

PC Hash

Mix of both

Branch Predictor Example (1/2)
• 1024 counters (210)
– 32 sets ()

• 5-bit PC hash chooses a set
– Each set has 32 counters

• 32 x 32 = 1024
• History length of 5 (log232 = 5)

• Branch collisions
– 1000’s of branches collapsed into only 32 sets

PC Hash

5

5

Branch Predictor Example (2/2)

• 1024 counters (210)
– 128 sets ()

• 7-bit PC hash chooses a set

– Each set has 8 counters
• 128 x 8 = 1024

• History length of 3 (log28 = 3)

• Limited Patterns/Correlation
– Can now only handle history length of three

PC Hash

7

3

Two-Level Predictor Organization
• Branch History Table (BHT)
– 2a entries
– h-bit history per entry

• Pattern History Table (PHT)
– 2b sets
– 2h counters per set

• Total Size in bits
– h´2a + 2(b+h)´2

PC Hash a

b

h

Each entry is a 2-bit counter

Classes of Two-Level Predictors
• h = 0 or a = 0 (Degenerate Case)
– Regular table of 2bC’s (b = log2counters)

• h > 0, a > 0
– “Local History” 2-level predictor
– Predict branch from its own previous outcomes

• h > 0, a = 0
– “Global History” 2-level predictor
– Predict branch from previous outcomes of all branches

Why Global Correlations Exist
Example: related branch conditions

p = findNode(foo);
if (p is parent)
do something;

do other stuff; /* may contain more branches */

if (p is a child)
do something else;

Outcome of second
branch is always

opposite of the first
branch

A:

B:

A Global-History Predictor

PC Hash

b

h

Single global
Branch History Register (BHR)

PC Hash

b
h

{b,h}

Tradeoff Between B and H
• For fixed number of counters
– Larger h à Smaller b

• Larger h à longer history
– Able to capture more patterns
– Longer warm-up/training time

• Smaller b à more branches map to same set of counters
– More interference

– Larger b à Smaller h
• Just the opposite…

Combined Indexing (1/2)
• “gshare” (S. McFarling)

PC Hash

k

XOR

k = log2counters

k

Combined Indexing (2/2)
• Not all 2h “states” are used
– (TTNN)* uses ¼ of the states for a history length of 4
– (TN)* uses two states regardless of history length

• Not all bits of the PC are uniformly distributed
• Not all bits of the history are uniformly correlated
– More recent history more likely to be strongly correlated

PC Hash

k

XOR

k = log2counters

k

Combining Predictors
• Some branches exhibit local history correlations
– ex. loop branches

• Some branches exhibit global history correlations
– “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

• Global and local correlation often exclusive
– Global history hurts locally-correlated branches
– Local history hurts globally-correlated branches

Tournament Hybrid Predictors

Pred0 Pred1 Meta Update

û û ---

û ü Inc

ü û Dec

ü ü ---

Pred0 Pred1
Meta-

Predictor

Final Prediction

table of 2-/3-bit counters

If meta-counter MSB = 0,
use pred0 else use pred1

Pros and Cons of Long Branch Histories
• Long global history provides context
– More potential sources of correlation

• Long history incurs costs
– PHT cost increases exponentially: O(2h) counters
– Training time increases, possibly decreasing accuracy

Predictor Training Time
• Ex.: prediction equals opposite for 2nd most recent

• Hist Len = 2
• 4 states to train:

NN àT
NT àT
TN à N
TT à N

• Hist Len = 3
• 8 states to train:

NNN àT
NNT àT
NTN à N
NTT à N
TNN àT
TNT àT
TTN à N
TTT à N

Branch Predictions Can Be Wrong
• How/when do we detect a misprediction?
• What do we do about it?
– Re-steer fetch to correct address
– Hunt down and squash instructions from the wrong path

Branch Mispredictions in the Pipeline (1/2)

Fetch
(IF)

Decode
(ID)

Dispatch
(DP)

Execute
(EX)

Tbr

A

B

D

br

br

br

…

A

A

A

Mispred Detected

B

BD

Multiple speculatively fetched
basic blocks may be in flight

at the same time!

4-wide superscalar

Branch Mispredictions in the Pipeline (2/2)

IF

ID

DP

EX

Direction prediction, target prediction

We know if branch is return, indirect jump, or phantom branch

RAS iBTB

If indirect target, can potentially read target from RF
Squash instructions in BP, L1-I, and ID
Re-steer BP to target from RF

Detect wrong direction or wrong target (indirect)
Squash instructions in BP, L1-I, ID and DP, plus rest of pipeline
Re-steer BP to correct next PC

Squash instructions in BP and L1-I-lookup
Re-steer BP to new target from RAS/iBTB

Phantom Branches
• May occur when performing multiple bpreds

PC

BPred

T
4 preds corresponding to

4 possible branches in
the fetch group

L1-I

BRXORBRADD

A B C D

X Z

Fetch: ABCX… (C appears to be a branch)

After fetch, we discover C cannot be taken because it is not
even a branch! This is a phantom branch.

Should have fetched: ABCDZ…

TNN

Front-End Hardware Organization

L1-I

BPred

BTB

+
sizeof(L1-I-line)

ID

RAS

iBTB

uncond br

!=

actual target

push on call
pop
on

retn

no branch

is retn
is indir

control

NPC PC

EX

Speculative Branch Update (1/3)

• Ideal branch predictor operation
1. Given PC, predict branch outcome

2. Given actual outcome, update/train predictor

3. Repeat

• Actual branch predictor operation
– Streams of predictions and updates proceed parallel

APredict: B C D E F G

Update: A B C D E F G

time

Can’t wait for update before making new prediction

Speculative Branch Update (2/3)
• BHR update cannot be delayed until commit
– But outcome not known until commit

APredict: B C D E F G

Update: A B C D E F G
01

10
10

01
10

10
01

10
10

01
10

10
01

10
10

11
01

01BHR:

Branches B-E all predicted with
the same stale BHR value

Speculative Branch Update (3/3)
• Update branch history using predictions
– Speculative update

• If predictions are correct, then BHR is correct
• What happens on a misprediction?
– Commit-time BHR recovery
– Execution-time BHR recovery

Commit-time BHR recovery

BPred
Lookup

0110100100100…

Speculative BHR

BPred
Update

Actual BHR
Mispredict!

Execution-time BHR recovery
• Commit-time may delay misprediction recovery

• Instead, “checkpoint” BHR at time of prediction
– Roll back to checkpoint for recovery
– Must track where to roll back to
– In-flight branches limited by number of checkpoints

Load
Br

Cache miss to DRAM

Executed, but
can’t recover

until load is done

Overriding Branch Predictors (1/2)
• Use two branch predictors
– 1st one has single-cycle latency (fast, medium accuracy)
– 2nd one has multi-cycle latency, but more accurate
– Second predictor can override the 1st prediction

Get speed without full penalty of low accuracy

Overriding Branch Predictors (2/2)

Predict
A’

Fast 1st Pred

2-cycle
Pipelined L1-I

Slower 2nd Pred

A

Predict
B

Predict
A’

Predict
B’

Fetch A

B

Predict
C

Predict
B’

Predict
A’

Predict
C’

Fetch B

Fetch A

If A=A’ (both preds
agree), done

If A != A’, flush A, B andC
restart fetch with A’

Z

Predict
A

