COMP 590-154:
Computer Architecture

Branch Prediction

* Fetch group is aligned, cache line size > fetch group

— Still limit fetch width if branch is “taken”
— If we know “not taken”, width not limited

| | | | |
|_Inst_|Branch| | |

* Fetch group is aligned, cache line size > fetch group

— Still limit fetch width if branch is “taken”
— If we know “not taken”, width not limited

| | | | |
|_Inst_|Branch| | |

 Direction:
— Conditional vs. Unconditional
* Target:

— PC-encoded

e PC-relative
* Absolute offset

— Computed (target derived from register)

* Use two hardware predictors
— Direction predictor guesses if branch is taken or not-taken

— Target predictor guesses the destination PC

* Predictions are based on history
— Use previous behavior as indication of future behavior
— Use historical context to disambiguate predictions

* To predict a branch, must find the branch

PC

Fetch PC

I o~
.l. PD
} }
L [~ | | !
| . | |
sizeof(inst) \

N Branch’s PC

| Predecode branches on fill from L2 |

v

I >
AR

T

Dir

Target

Pred Pred

A} A}
|_'@ Branch’s PC Store | bit per
inst, set if inst

sizeof(inst) .
is a branch

partial-decode
logic removed

Predict fetch group without location of branches

— With one branch in fetch group, does it matter where it is?

—
—

Nz

One predictor entry
per fetch group

One predictor entry”
per instruction PC

[br2 |

NV

Correct Correct
brl br2 Dir Pred Target Pred

| | brl

sizeof($-line) N N N --
Cache Line address N T v
T -- T X

This is still challenging: we may

need to choose between multiple
targets for the same cache line

v
v
(@)

no LSBs of PC

sizeof($-line)

|
|
|
|
1 LSBs of PC
|
|
|
|

=

l

v v N
Scan for RNk

T
|

[I st (‘T”

Direction: 0 or 1
Target: 32- or 64-bit value

Turns out targets are generally easier to predict
— Don’t need to predict Not-taken target

— Taken target doesn’t usually change AR

I 1

Only need to predict taken-branch targets

Prediction is really just a “cache”
— Branch Target Buffer (BTB)

e

sizeof(inst)

PC

'Branch Instruction
Branch PC Address (Tag)

/’

’

Branch Target
~ Address

Q Next Fetch PC

Branch PC

v
Next PC

* Branch prediction is permitted to be wrong
— Processor must have ways to detect mispredictions
— Correctness of execution is always preserved
— Performance may be affected

00000000cfff981 OOOOOOOchff9704
| |

00000000c£££9810
00000000c£££9824 | ‘
00000000c££f£984c ' '
00001111beef9810 | |
| 00000000cfff9704
00000000c£££9810 SRl
00000000c£££9824 ‘

f984 | 00000000cfff9900
n |

00000000cf£f£f984c

981 | 00000000cfff9704
| |

| 00000000cfff9830 |
00000000cf984c 00000000cfff9830

f984 | 00000000cfff9900
| |

| I
v| 1981 |ff9704
| |
ff9830

’ _

00000000cfff984c

N

00000000cf ff9900

* Dir-Pred says “taken”

e Target-Pred (BTB) misses

— Could default to fall-through PC (as if Dir-Pred said N-t)
* But we know that’s likely to be wrong!

e Stall fetch until target known ... when’s that?

— PC-relative: after decode, we can compute target
— Indirect: must wait until register read/exec

0x1000:

O0xFC34:

OxFDO0S8:

OxFFBO :

(start of printf)

CALL printf

CALL printf

CALL printf

FFB

FC3

OxIOOO

\

/

P: 0x1000: ST $RA = [$sp]

O0x1B98: LD $tmp € [S$sp]
0x1B9C: RETN $tmp - - - - _

: OxXFC34: CALL printf
:0xXFC38: CMP $ret, O 7
OxFD08: CALL printf

:0xXFDOC: CMP $ret, O

Keep track of call stack

A: OxFC34: CALL printf

FC38 FC38
P: 0x1000: ST $RA => [$sp] D004
0x1B9C: RETN S$tmp |_. 1

A’ :0xFC38: CMP Sret, O \ j

FC38

1. Wrap-around and overwrite

e Will lead to eventual misprediction after four pops
2. Do not modify RAS

e Will lead to misprediction on next pop

64AC: CALL printf

“— top of stack

* If a branch was previously taken...

— There’s a good chance it’ll be taken again

for (i=0; i < 100000; i++)

{
/* do stuff *‘\
}

This branch will be taken

99,999 times in a row.

* Always predict N-t
— No fetch bubbles (always just fetch the next line)
— Does horribly on loops

* Always predict T
— Does pretty well on loops
— What if you have if statements?

p = calloc(num,sizeof (*p));
if (p == NULL) ;
error han8ler) This branch is practically

never taken

Do what you did last time

0xDCO8 for (i=0; i < 100000; i++)
{
0xDC44 : if((i % 100) == 0)
tick(); 4‘////,,_»
0xDC50: if((L & 1) == 1)

odd() ;

[Z [- [

OXDC08:I‘IIIIIIIIII w 0TI

N

100,000 iterations

\WNT

TN

How often is branch outcome != previous outcome!?

2/ 100,000 <«

O0xDC44:TTTTT .. TNTTTTT ... TNTTTTT ...

2/ 100«

99.998%

Prediction
Rate

" 98.0%

OxDCS50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT..

2/ 2 <

' 0.0%

4

Saturating Two-Bit Counter

Predict N-t
PredictT

Transition on T outcome

L 1OO

Transition on N-t outcome

a8 D

FSM for Last-Outcome FSM for 2bC
Prediction (2-bit Counter)

IbC: ' Initial Training/VWarm-up |

...‘@@@@
o ¥ i g

v x x v v

O

T

2bC:

...‘@@@
| x

Only | Mispredict per N branches now!
DC08:99.999% DC44:99.0%

S -
32 or 64 bits

n entries/counters

log; n bits |~

table update

<
<

Prediction l
Actual outcome

* Take the log,n least significant bits of PC

* May need to ighore some bits
— In RISC, insns. are typically 4 bytes wide
* Low-order bits zero

— In CISC (ex. x86), insns. can start anywhere
* Probably don’t want to shift

* Branch at 0xDC50 changes on every iteration

— 1bc and 2bc don’t do too well (50% at best)
— But it’s still obviously predictable

e Why?
— It has a repeating pattern: (NT)*
— How about other patterns? (TTNTN)*

* Use branch correlation
— Branch outcome is often related to previous outcome(s)

PC

Previous Outcome |

. Counter if prev=0 |

Counter if prev=|

prev = | O@
prev =20 OO
prev = | Q@
prev = | Q@

prediction =T %
prediction =T
prediction =T

prediction =T

Counter if prev=0 |
e Counter if prev=1 |

prev = | Q@
prev =20 ©]0
prev = | Q@
prev =20 ©]0

prediction = N
prediction =T
prediction = N
prediction =T

* Counters learn “pattern” of prediction

Previous 3 Outcomes |[IESBEEE Counter if prev=000 |
1 ///, . .
: e - Counter if prev=001
1 // ”/ .

PC | Counter if prev=010 |

| 'BOEN00000e00e ™
.

’ | Counter if prev=11 |

001 = 1;011 > 0;110 > 0;100 > |
00110011001... (001 1)*

Different pattern for Shared set of Mix of both
each branch PC patterns

e 1024 counters (219)

— 32sets()
* 5-bit FUhash chooses a set

— Each set has 32 counters
e 32x32=1024

* History length of 5 (log,32 =5)

* Branch collisions

— 1000’s of branches collapsed into only 32 sets H

e 1024 counters (219)
— 128 sets ()

- 7-bit P@ash chooses a set |-|
— Each set has 8 counters

e 128 x8=1024 1

e History length of 3 (log,8 = 3)

* Limited Patterns/Correlation

— Can now only handle history length of three

 Branch History Table (BHT)

— 22 entries

— h-bit history per entry

e Pattern History Table (PHT)
— 2P sets
— 2N counters per set b

e Total Size in bits
— hx22 + 2(b+h)x2

\ Each entry is a 2-bit counter

* h=0ora=0 (Degenerate Case)
— Regular table of 2bC’s (b = log,counters)

* h>0,a>0

— “Local History” 2-level predictor

— Predict branch from its own previous outcomes
e h>0,a=0
— “Global History” 2-level predictor

— Predict branch from previous outcomes of all branches

Example: related branch conditions

p = findNode (foo) ;
if (p is parent)

A: 4o something;
do other stuff; /* may contain more branches */
_] _ Outcome of second
if (p is a child) branch is always

B: do something else; opposite of the first

branch

Single global
Branch History Register (BHR)

 For fixed number of counters

— Larger h = Smaller b

* Larger h = longer history
— Able to capture more patterns
— Longer warm-up/training time
* Smaller b 2 more branches map to same set of counters

— More interference

— Larger b - Smaller h

 Just the opposite...

e “gshare” (S. McFarling)

k = log,counters

* Not all 2" “states” are used
— (TTNN)* uses % of the states for a history length of 4
— (TN)* uses two states regardless of history length

* Not all bits of the PC are uniformly distributed
* Not all bits of the history are uniformly correlated

— More recent history more likely to be strongly correlated

k = log,counters

* Some branches exhibit local history correlations

— ex. loop branches

* Some branches exhibit global history correlations

— “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

 Global and local correlation often exclusive

— Global history hurts locally-correlated branches
— Local history hurts globally-correlated branches

Meta- table of 2-/3-bit counters
Predictor
[2
-

'

Final Prediction Pred, Pred, Meta Update
X X —
If meta-counter MSB = 0, % v Inc

use pred, else use pred, %

x

Dec

* Long global history provides context

— More potential sources of correlation

* Long history incurs costs

— PHT cost increases exponentially: O(2") counters
— Training time increases, possibly decreasing accuracy

* Ex.: prediction equals opposite for 2" most recent

e Hist Len =2 e Hist Len =3
* 4 states to train: e 8 states to train:
NN —->T NNN 2T
NT ST NNT > T
TN =2 N NTN =2 N
TT > N NTT > N
TNN =>T
TNT=>T
TTN => N

TTT > N

 How/when do we detect a misprediction?

e What do we do about it?
— Re-steer fetch to correct address
— Hunt down and squash instructions from the wrong path

, Multiple speculatively fetched Mispred Detected

basic blocks may be in flight

at the same time!

|-| Direction prediction, target prediction
|-| We know if branch is return indirect jump, or phantom branch

Squash instructions in BP and L1 -I-lookup
Re-steer BP to new target from RAS/iBTB

If indirect target, can potentially read target from RF
Squash instructions in BP, LI-l,and ID

Re-steer BP to target from RF

Detect wrong direction or wrong target (indirect)
Squash instructions in BP, L1-I, ID and DP, plus rest of pipeline
Re-steer BP to correct next PC

 May occur when performing multiple bpreds

A B C D 4 preds corresponding to

—->|.|.| TIT 4 possible branches in

the fetch group

X+
—

Fetch: ABCX... (C appears to be a branch)

After fetch, we discover C cannot be taken because it is not
even a branch! This is a phantom branch.

Should have fetched:ABCDZ...

NPC

PC

AR

-
A

actual target~~J] [__-{----~

o
L

I

A

:@ |

t
sizeof(L |-I-line) T

push on call
!

. pop
S on

-

- is indir
. is retn
-+ uncond br
- no branch

* |deal branch predictor operation

1. Given PC, predict branch outcome
2. Given actual outcome, update/train predictor

3. Repeat

* Actual branch predictor operation
— Streams of predictions and updates proceed parallel

Update: ABCDEFG

» time

BHR update cannot be delayed until commit

— But outcome not known until commit

predicc RIS
Update: ’ A M

Branches B-E all predicted with

the same stale BHR value

* Update branch history using predictions

— Speculative update
* |If predictions are correct, then BHR is correct
 What happens on a misprediction?

— Commit-time BHR recovery
— Execution-time BHR recovery

Commit-time BHR recovery

| ~0110100100100...

Speculative BHR

Mispredict! L -

Actual BHR

* Commit-time may delay misprediction recovery

| | Cache miss to DRAM

Executed, but

can’t recover

. until load is done o
* Instead, “checkpoint” BHR at time of prediction

— Roll back to checkpoint for recovery
— Must track where to roll back to
— In-flight branches limited by number of checkpoints

* Use two branch predictors
— 1%t one has single-cycle latency (fast, medium accuracy)
— 2" one has multi-cycle latency, but more accurate
— Second predictor can override the 1% prediction

T~ A<t

“

Fast |5t Pred — = Predict || Predict | | Predict || Predict | | Pre Predict
A A B B C C
Predict Predict
2-cycle r' Fetch A A W o
Pipelined L1-1 "1 :
i & W Pred’lct
7

-

Slower 2" Pred = -~ If A !=A’, flush A, B andC

restart fetch with A’

If A=A’ (both preds
agree), done

