COMP 590-154:
Computer Architecture

Out-of-Order Memory Access

* QOut-of-order execution: a performance technique

* Feature |: Dynamic scheduling (i0O — 000)
— “Performance” piece: re-arrange insns. for high perf.
— Decode (iO) — dispatch (iO) + issue (000)
— Two algorithms: Scoreboard, Tomasulo
* Feature Il: Precise state (0OoO — iO)
— “Correctness” piece: put insns. back into program order

— Writeback (0Oo0) — complete (0O00) + retire (iO)
— Two designs: P6, R10K

If R1 1=R7

— Then Load R8 gets correct value from cache

If R1 ==R7

— Then Load R8 should get value from the Store

— Butit didn’t!

Load R3 = O[R6]

v

Add R7 = R3 + R9

v

Store R4 - O[R7]

v

Sub Rl =Rl —R2

A 4

Load R8 = O[RI]

But there was a later load...

A 4

Issue
Issue
Issue
Issue

Issue

MisacdurVilies!. ..

Cache Hit!

* Ordering problem is a data-dependence violation

* Imprecise memory worse than imprecise registers

* Why can’t this happen with non-memory insts?

— Operand specifiers in non-memory insns. are absolute

* “R1” refers to one specific location

— Operand specifiers in memory insns. are ambiguous
 “R1” refers to a memory location specified by the value of R1.
* When pointers (e.g., R1) change, so does this location

* Memory disambiguation on loads

— Do earlier unexecuted stores to the same address exist?

* Binary question: answer is yes or no

* Store-to-load forwarding problem
— I'm a load: Which earlier store do | get my value from?

— I'm a store: Which later load(s) do | forward my value to?
* Non-binary question: answer is one or more insn. identifiers

* load/store queue (LSQ)
— Completed stores write to LSQ
— When store retires, head of LSQ written to L1-D

— When loads execute, access LSQ and L1-D in parallel
* Forward from LSQ if older store with matching address

S

store data

load/store

load data

addr

L1-D

\ 4
»
»

Oldest —m

Youngest ————>

Data Cache
0x3290| -17
0x3300 I
O0x3410| 25
O0x3418| 1234

L/S PC Seq Addr Value
L| OxFO48 | 41773 | 0x3290| 42
S|O0xFO4C| 41774 |0x3410| 25
S| OxFO54 | 41775 | 0x3290 | -I17
L| OxFO60 | 41776 | 0x3418| 1234
L| OxF840 | 41777 | 0x3290| -17
L | OxF858 | 41778 | 0x3300 I
S|OxF85C| 41779 | 0x3290 0
L| OxF870| 41780 | 0x3410| 25
L| OxF628 | 41781 | 0x3290 0
L|OxF63C| 41782 | 0x3300 I

* No memory reordering
e LSQ still needed for forwarded data (last slide)
e Easy to schedule

| (“head” pointer)

Ready! | ' bid
| » grant

Ready! | bid
l » @=—=grant

e Loads exec Oo0O w.r.t. each other :
— Stores block everything 2

¢ & | (“head” pointer)

i 5>

P g
Fd [l
T
] >

e STA: STore Address
e STD: STore Data

 Makes some designs easier

— RS/ROB store one value dispatch/ schedule

— Stores need two (A & D) alloc
LSQ

:peO| =

(00

Store <
Add§< i
”
\

Load

/
| vis /
| ais

ai

* Only address is needed to disambiguate

* May be ready earlier to allow checking for violations
— No need to wait for data

Address ready

Data ready —
e
L :_D‘I_
-

Most aggressive approach
Relies on fact that store—>load forwarding is rare
Greatest potential IPC — loads never stall

Potential for incorrect execution

— Need to be able to “undo” bad loads

e Case 1: Older store execs before younger load

— No problem; if same address st—=2>1d forwarding happens

e Case 2: Older store execs after younger load

— Store scans all younger loads
— Address match = ordering violation

(Load 41773 ignores broadcast because it has a lower seq #)

3

\ 4

L/S PC Seq Addr Value
L| OxFO48 | 41773 | 0x3290| 42
S|O0xF04C| 41774 |0x3410| 25
S| OxFO54 | 41775 |0x3290 | -I17
L | OxFO60 | 41776 | 0x3418| 1234
L| OxF840 | 41777 | 0x3290| -17
L | OxF858 | 41778 | 0x3300 I

S|OxF85C| 41779 | 0x3290 0

L| OxF870 | 41780 | 0x3410| 25
L| OxF628 | 41781 | 0x3290| -17
L|OxF63C| 41782 | 0x3300 I

Store broadcasts value,
address and sequence #

(-17,0x3290,41775)

IF younger load hadn’t executed, and
address matches, grab broadcasted value

Loads CAM-match on
SN o)
store $eq-# is’'lower than

AN Thstdction may be involved in
IF PR PABRNR2rRLing dokatien

address matches, then ordering violation!

* Loads are not the only thing which are wrong

— Loads propagate wrong values to all dependents

e These must somehow be re-executed

\ * FEasiest: flush all instructions after
(and including?) the misspeculated
load, and just refetch

e Load uses forwarded value

* Correct value propagated when
instructions re-execute

* Exactly same mispredicted branches
— Checkpoint at every load in addition to branches
* Very large number of checkpoints needed

— Rollback to previous branch (which has its own checkpoint)
* Make sure load doesn’t misspeculate on 2" try
* Must redo work between the branch and the load

— Can work with undo-list style of recovery

* Not all younger insns. are dependent on bad load
* Pipeline latency due to refetch is exposed

Re-execute only the dependent insns.

ldeal case w.r.t. maintaining high IPC

— No need to re-fetch/re-dispatch/re-rename/re-execute
Very complicated

— Need to hunt down only data-dependent insns.

— Some bad insns. already executed (now in ROB)
— Some bad insns. didn’t execute yet (still in RS)

P4 does something like this (called “replay”)

* Very complicated CAM logic

— Need to quickly look up based on value
— May find multiple values / need age based search

* No need for age-based search in ROB
— Physical regs. are renamed, guarantees one writer

— No easy way to prevent multiple stores to same address

* On Load dispatch, find data from earlier Store

Address Bank Data Bank Valid store
™ <P H Addr match Use this
ST 0x4000 _?:cm ' EY- —®8 store
, No earlier
—?:° m . ﬁ matches o
ST 0x4000 =P .
== L . _
ST Ox4120 | Need to adjust this so that
load need not be at bottom,
—$— and LSQ can wrap-around)
LD 0x4000 — _$_

If ILSQ)] is large, logic can be
adapted to have log delay

* On execute Store (STA+STD), check for later Loads

ST 0x4000

Data Bank

ST 0x4120

LD 0x4000

\ 4

ST 0x4000

\ 4

\ 4

Overwritten —]
Is Load _O" Capture
Value
Addr Match
'D)—l

Overwritten

e Each store assigned unique number (its color)

e Loads inherit the color of the most recent store

€ color=i @ —

(St! Color=2 ‘

Ld

Ilgnore store broadcasts
\St) Color=3 (Ld If store’s color > your own
‘Ld ‘Ld
All three loads have same color:
\Ld' -~ only care about ordering w.r:t.
stores, not other loads

‘Ld
@ —Color=4
®

e Stores don’t need to broadcast address to stores

* Loads don’t need to check against earlier loads

Store Queue (STQ) Load Queue (LDQ)

Associative search
for later loads for
ST->LD forwarding
only needs to check
entries that actually
contain loads

Associative search
for earlier stores
only needs
to check entries
that actually contain
stores

