
COMP 590-154:
Computer Architecture

Out-of-Order Memory Access

Dynamic Scheduling Summary
• Out-of-order execution: a performance technique
• Feature I: Dynamic scheduling (iO ® OoO)
– “Performance” piece: re-arrange insns. for high perf.
– Decode (iO) ® dispatch (iO) + issue (OoO)
– Two algorithms: Scoreboard, Tomasulo

• Feature II: Precise state (OoO ® iO)
– “Correctness” piece: put insns. back into program order
– Writeback (OoO) ® complete (OoO) + retire (iO)
– Two designs: P6, R10K

One remaining piece: OoO memory accesses

Executing Memory Instructions
• If R1 != R7

– Then Load R8 gets correct value from cache
• If R1 == R7

– Then Load R8 should get value from the Store
– But it didn’t!

Load R3 = 0[R6]
Add R7 = R3 + R9
Store R4 à 0[R7]
Sub R1 = R1 – R2
Load R8 = 0[R1]

Issue

Issue

Cache Miss!

Issue Cache Hit!

Miss serviced…
Issue
Issue

But there was a later load…

Memory Disambiguation Problem
• Ordering problem is a data-dependence violation
• Imprecise memory worse than imprecise registers

• Why can’t this happen with non-memory insts?
– Operand specifiers in non-memory insns. are absolute

• “R1” refers to one specific location
– Operand specifiers in memory insns. are ambiguous

• “R1” refers to a memory location specified by the value of R1.
• When pointers (e.g., R1) change, so does this location

Two Problems

• Memory disambiguation on loads

– Do earlier unexecuted stores to the same address exist?

• Binary question: answer is yes or no

• Store-to-load forwarding problem

– I’m a load: Which earlier store do I get my value from?

– I’m a store: Which later load(s) do I forward my value to?

• Non-binary question: answer is one or more insn. identifiers

Load/Store Queue (1/3)
• Load/store queue (LSQ)
– Completed stores write to LSQ
– When store retires, head of LSQ written to L1-D
– When loads execute, access LSQ and L1-D in parallel

• Forward from LSQ if older store with matching address

Load/Store Queue (2/3)

regfile

L1-D

I$
B
P

ROB

LSQload/store

store data
addr

load data

Almost a “real” processor diagram

Load/Store Queue (3/3)

L 0xF048 41773 0x3290 42

L/S PC Seq Addr Value

S 0xF04C 41774 0x3410 25
S 0xF054 41775 0x3290 -17
L 0xF060 41776 0x3418 1234
L 0xF840 41777 0x3290 -17
L 0xF858 41778 0x3300 1
S 0xF85C 41779 0x3290 0
L 0xF870 41780 0x3410 25
L 0xF628 41781 0x3290 0
L 0xF63C 41782 0x3300 1

Oldest

Youngest

0x3290 42

0x3410 38
0x3418 1234

0x3300 1

Data Cache

25

-17

In-order Memory (Policy 1/4)
• No memory reordering
• LSQ still needed for forwarded data (last slide)
• Easy to schedule

Ready!

bid
grant

bid
grant

Ready!
1 (“head” pointer)

… …

Fairly simple, but low performance

Loads OoO between Stores (Policy 2/4)
• Loads exec OoO w.r.t. each other
– Stores block everything

S

re
ad

y
iss

ue
d

L

L

S

L

S=0
L=1

1 (“head” pointer)

Still simple, but better performance

Stores Can be Split into STA/STD
• STA: STore Address
• STD: STore Data

• Makes some designs easier
– RS/ROB store one value
– Stores need two (A & D)

Store

dispatch/
alloc

STA
ST
D

LD

“store

”

“load

”

LSQ

RS

schedule

Add
Load

Loads Wait for STAs Only (Policy 3/4)
• Only address is needed to disambiguate
• May be ready earlier to allow checking for violations
– No need to wait for data

S

L

Address ready
Data ready

Still simple, even better performance

Loads Execute When Ready (Policy 4/4)
• Most aggressive approach
• Relies on fact that storeàload forwarding is rare
• Greatest potential IPC – loads never stall

• Potential for incorrect execution
– Need to be able to “undo” bad loads

Very complex, but high performance

Detecting Ordering Violations (1/2)
• Case 1: Older store execs before younger load
– No problem; if same address stàld forwarding happens

• Case 2: Older store execs after younger load
– Store scans all younger loads
– Address match à ordering violation

Detecting Ordering Violations (2/2)

L 0xF048 41773 0x3290 42
S 0xF04C 41774 0x3410 25
S 0xF054 41775 0x3290 -17
L 0xF060 41776 0x3418 1234
L 0xF840 41777 0x3290 -17
L 0xF858 41778 0x3300 1
S 0xF85C 41779 0x3290 0
L 0xF870 41780 0x3410 25
L 0xF628 41781 0x3290 42
L 0xF63C 41782 0x3300 1

Store broadcasts value,
address and sequence #
(-17,0x3290,41775)

Loads CAM-match on
address, only care if
store seq-# is lower than
own seq

(Load 41773 ignores broadcast because it has a lower seq #)

IF younger load hadn’t executed, and
address matches, grab broadcasted value

IF younger load has executed, and
address matches, then ordering violation!

-17

(0,0x3290,41779)

An instruction may be involved in
more than one ordering violation

L/S PC Seq Addr Value

Must flush all later accesses after violation

Dealing with Misspeculations
• Loads are not the only thing which are wrong
– Loads propagate wrong values to all dependents

• These must somehow be re-executed

• Easiest: flush all instructions after
(and including?) the misspeculated
load, and just refetch

• Load uses forwarded value
• Correct value propagated when

instructions re-execute

Flushing Complications
• Exactly same mispredicted branches
– Checkpoint at every load in addition to branches

• Very large number of checkpoints needed
– Rollback to previous branch (which has its own checkpoint)

• Make sure load doesn’t misspeculate on 2nd try
• Must redo work between the branch and the load

– Can work with undo-list style of recovery

• Not all younger insns. are dependent on bad load
• Pipeline latency due to refetch is exposed

Selective Re-Execution
• Re-execute only the dependent insns.
• Ideal case w.r.t. maintaining high IPC
– No need to re-fetch/re-dispatch/re-rename/re-execute

• Very complicated
– Need to hunt down only data-dependent insns.
– Some bad insns. already executed (now in ROB)
– Some bad insns. didn’t execute yet (still in RS)

• P4 does something like this (called “replay”)

LSQ Hardware in More Detail
• Very complicated CAM logic
– Need to quickly look up based on value
– May find multiple values / need age based search

• No need for age-based search in ROB
– Physical regs. are renamed, guarantees one writer
– No easy way to prevent multiple stores to same address

Loads Checking for Earlier Stores
• On Load dispatch, find data from earlier Store

ST 0x4000

ST 0x4000

ST 0x4120

LD 0x4000

=

Address Bank Data Bank

=

=

=

=

=

=

0

No earlier
matches

Addr match

Valid store
Use this

store

Need to adjust this so that
load need not be at bottom,
and LSQ can wrap-around

If |LSQ| is large, logic can be
adapted to have log delay

Sim
ilar Logic to Previous Slide

Data Forwarding
• On execute Store (STA+STD), check for later Loads

ST 0x4000

ST 0x4120

LD 0x4000

Addr Match

Is Load
Capture

Value

Overwritten

Overwritten

Data Bank

This is ugly, complicated, slow, and power hungry

ST 0x4000

Alternative Data Forwarding: Store Colors
• Each store assigned unique number (its color)
• Loads inherit the color of the most recent store

St

St

St

St

Ld

Ld

Ld

Ld

Color=1

Color=2

Color=3

Color=4

Ld

All three loads have same color:
only care about ordering w.r.t.

stores, not other loads

St

Ld

Ld

Ld

Ignore store broadcasts
If store’s color > your own

Split Load Queue/Store Queue
• Stores don’t need to broadcast address to stores
• Loads don’t need to check against earlier loads

Store Queue (STQ) Load Queue (LDQ)

Associative search
for earlier stores

only needs
to check entries

that actually contain
stores

Associative search
for later loads for

STàLD forwarding
only needs to check
entries that actually

contain loads

