
Automatic Virtualization of Accelerators
Hangchen Yu

The University of Texas at Austin
hyu@cs.utexas.edu

Arthur M. Peters
The University of Texas at Austin

amp@cs.utexas.edu

Amogh Akshintala
The University of North Carolina at Chapel Hill

aakshintala@cs.unc.edu

Christopher J. Rossbach
The University of Texas at Austin and VMware Research

rossbach@cs.utexas.edu

Abstract
Applications are migrating en masse to the cloud, while ac-
celerators such as GPUs, TPUs, and FPGAs proliferate in
the wake of Moore’s Law. These technological trends are
incompatible. Cloud applications run on virtual platforms,
but traditional I/O virtualization techniques have not pro-
vided production-ready solutions for accelerators. As a result,
cloud providers expose accelerators by using pass-through
techniques which dedicate physical devices to individual
guests. The multi-tenancy that drives their business is lost
as a consequence.
This paper proposes automatic generation of virtual ac-

celerator stacks to address the fundamental tradeoffs be-
tween virtualization properties and techniques for acceler-
ators. AvA (Automatic Virtualization of Accelerators) re-
purposes a para-virtual I/O stack design based on API re-
moting to present virtual accelerator APIs to guest VMs.
Conventional wisdom is that API remoting sacrifices inter-
position and compatibility. AvA forwards invocations over
hypervisor-managed transport to recover interposition. AvA
compensates for lost compatibility by automatically gener-
ating guest libraries, drivers, hypervisor-level schedulers,
and API servers. AvA supports pluggable transport layers,
allowing VMs to use disaggregated accelerators. With AvA,
a single developer could virtualize a core subset of OpenCL
at near-native performance in just a few days.

ACM Reference Format:
Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christo-
pher J. Rossbach. 2019. Automatic Virtualization of Accelerators.
InWorkshop on Hot Topics in Operating Systems (HotOS ’19), May
13–15, 2019, Bertinoro, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3317550.3321423

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS’19, May 2019, Bertinoro, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321423

Application

User-mode API

User-mode Driver

Kernel-mode Driver

Hardware

Public API

Internal API

ioctl

MMIO

Silo

Figure 1. A typical application, accelerator silo, and hardware.
The dashed box indicates the tightly coupled silo. The public API
and interfaces with stripped backgrounds are virtualizable. All
interfaces with backgrounds are unstable and cannot be relied on
in a new version of the silo.

1 Introduction
Many emerging workloads such as machine learning [7] and
genomics [8] rely on cloud computing to achieve economies
of scale and lower operating costs. At the same time, the end
of Dennard scaling has led to the use of increasingly special-
ized accelerators such as GPUs, TPUs [20], IPUs [12, 16], and
FPGAs [25] to improve the performance of such workloads.
Cloud providers have responded by offering VM instances
with GPUs [2, 9, 10, 17], TPUs [11], and FPGAs [1, 18], but
the lack of practical accelerator virtualization forces them to
use pass-through techniques that dedicate physical hardware
to VMs. As a result, they sacrifice the consolidation benefits
of virtualization that are fundamental to their business.
Virtualizing accelerators is difficult in part because of

the associated software frameworks. Accelerator hardware
is typically controlled by proprietary programming frame-
works that consist of complexly intertwined layers (shown
in Figure 1) that lack standardization and stability, and are
opaque to system software. Rapid time-to-market and high
performance provide very strong incentives to vendors to
fuse layers of their software stack with proprietary proto-
cols and kernel bypass techniques, effectively forming what
we call silos. Silos are composed of tightly coupled vertical
layers that communicate either through proprietary inter-
faces, and/or using low-level mechanisms such as memory-
mapped command queues and MMIO, both of which are very

1

https://doi.org/10.1145/3317550.3321423
https://doi.org/10.1145/3317550.3321423

HotOS’19, May 2019, Bertinoro, Italy H. Yu, A. M. Peters, A. Akshintala and C. J. Rossbach

difficult to efficiently interpose and virtualize. Silos provide
only one public interface: the user-mode API. Virtualization
based on interposing at layers in the middle of the stack is at
best device-specific, and at worst altogether impossible. Silos
make traditional virtualization techniques impractical (§2).
While silos are a major obstacle for accelerator virtual-

ization, we hypothesize that silos will remain an enduring
feature in future platforms. Vendors are incentivized to build
them by market competition and cross-generation compati-
bility concerns. This suggests a need for tools and techniques
that anticipate and integrate accelerator silos into virtualiza-
tion layers.
We make a case that API remoting is the only virtual-

ization technique that is practical in the presence of silos,
because it interposes the only standardized and stable in-
terface (e.g. CUDA, DirectX, or TensorFlow). API remot-
ing [23, 27, 29, 34, 36, 41, 43] forwards user-level API calls
to an API server running on the host or in an appliance
VM. Compatibility is lost because API remoting typically
involves modifying guest libraries. Further, these modified
libraries must be manually updated for every new API ver-
sion for each supported guest OS. API calls typically bypass
virtualization layers [27] which renders interposition and
hypervisor-enforced isolation impossible. Therefore, we fo-
cus our attention on techniques for compensating these lost
properties through automation and interposable API remot-
ing transport.
AvA automatically virtualizes APIs rather than para-vir-

tualizing specific devices. It forwards APIs using para-virtual
communication infrastructure gaining back hypervisor in-
terposition and resource management. AvA compensates for
lost compatibility by automating the construction of accel-
erator stacks. AvA takes an annotated API header as input
and generates a complete virtual API stack. AvA provides
near-native performance and minimizes developer effort. A
single developer can support a new hypervisor managed API
in a matter of days.

2 Motivation
This section summarizes limitations of existing virtualization
techniques when applied to accelerator silos. We conclude
that all conventional techniques have significant drawbacks,
which have collectively prevented the emergence of produc-
tion accelerator virtualization software.
Full virtualization [44, 46, 51] virtualizes the hardware
interface. For accelerators, this requires trap-based inter-
position of communication through MMIO and memory
BARs. Trapping on every guest access to MMIO and mem-
ory BARs results in devastating orders-of-magnitude perfor-
mance losses [57].

Para-virtualization exports a virtual device abstraction
to guest software [26], which provides an efficiently inter-
posable interface by construction. However, virtual accelera-
tors require custom drivers and framework libraries in the
guest. A further compatibility concern arises from the need
to support a single abstraction that encapsulates hardware
diversity across vendors and models. For example, GPUs
support multiple programming frameworks (e.g. OpenCL,
OpenGL, DirectX) common in multiple OSes, and supporting
all possible combinations with a virtual device abstraction is
a staggering engineering challenge.
Pass-through and Mediated pass-through (MPT) tech-
niques expose a physical device directly to guest software,
effectively “passing-through” guest communication over the
PCIe bus. The technique provides native performance and al-
lows guests to use native drivers and libraries, but bypassing
virtualization sacrifices its benefits. It is widely used in pro-
duction settings currently because there is no alternative for
supporting GPGPU compute, which remains unsupported by
production hypervisors [26]. MPT [51] changes the balance
of costs by interposing only sensitive interfaces and using
pass-through for others, yielding a hybrid of pass-through
and full- virtualization.
SR-IOV [35] enables the hardware to directly expose mul-
tiple virtual devices (VFs) to system software from a single
physical PCIe-attached device. SR-IOV provides an inter-
face and protocol for managing VFs, but does not specify
or implement the cross-VF sharing support, which is left to
the hardware. Consequently, SR-IOV is an enabling tech-
nology for pass-through techniques with strong virtualiza-
tion properties, but such a vision entails significant support
from the hardware to re-implement resource management
traditionally implemented by the hypervisor. At present, ev-
idence is scant in the marketplace that such support will
become the norm for accelerators. Very few GPUs support
SR-IOV [3, 30], and those that do use static resource partition-
ing to manage sharing. FPGAs commonly support SR-IOV
though vendor-provided PCIe IP blocks, and several research
systems leverage it virtualize FPGA-accelerators [40, 53, 58].
However, implementing resource management across vir-
tual functions exposed by SR-IOV remains a task for the
FPGA programmer. We are aware of no production TPUs
that support SR-IOV.
API remoting interposes at top-level framework APIs mak-
ing it the only technique that interposes at a standardized
layer for accelerator silos. However, API remoting compro-
mises key virtualization properties as well:
• Compatibility is a major challenge due to the rapid pace
of accelerator evolution. Frequent updates to accelator APIs
and runtimes requires changes to or reimplementation of
virtual devices, guest drivers, and libraries. For example,
VMware’s SVGA [26] virtual GPU device supports graphics

2

Automatic Virtualization of Accelerators HotOS’19, May 2019, Bertinoro, Italy

frameworks using an API-remoting subsystem that trans-
lates all guest operations (e.g. OpenGL calls) into DirectX
commands, but the monumental engineering effort required
to maintain guest drivers and framework libraries has caused
SVGA to lag behind the latest DirectX 12 by multiple ver-
sions. Another API-forwarding framework, GvirtuS [28],
took 25,000 LoC and many person-years to build.
• Performance for virtualized accelerators is often deter-
mined by both the frequency and mode of communication
between the guest application and the host API server. Sys-
tems such as vCUDA [43] and gvirtuS [28] show 10–40%
performance degradation on average. Related systems such
as rCUDA [27] and vmCUDA [54] optimize communication
and data movement, delivering near-native performance,
but these optimizations are specific to CUDA. Evidence that
API remoting’s performance provides the most compelling
compromise in the design space is emerging as startups and
major vendors have started to build user-space production
solutions (e.g. BitFusion [4] and Dell XaaS [31]).
• Interposition is fundamental to virtualization: hypervi-
sors require interposition to provide indirection between
logical and physical resources. Most API remoting solutions
bypass the hypervisor by forwarding API calls over sim-
ple RPC [27], which gives up interposition and hypervisor-
provided benefits as a result. The vCUDA [43] API server
spawns threads for all guest applications in a single process,
preventing even the most basic resource and fault isolation
among applications and VMs.

However, lost interposition and lost isolation are not fun-
damental to API remoting. VMware’s SVGA device forwards
DirectX APIs using hypervisor-managed FIFO queues, which
provides an interposition point the hypervisor can leverage
to isolate guests and perform resource management.
We observe that when applied to accelerators, all tech-

niques compromise virtualization properties. However, API
remoting has a key property not shared with the others: it
interposes a stable API that does not require separation of
accelerator silo layers. Additionally, its poor interposition
can be recovered by ensuring API remoting transport is in-
terposable, as suggested by the SVGA design [26]. Finally,
its compatibility losses manifest primarily as increased engi-
neering burden, which can be reduced by automation.

3 Vision
We anticipate and accommodate the proliferation of accel-
erator silos with tools for automatically constructing virtu-
alization layers based on API remoting. Our system, AvA
(Automatic Virtualization of Accelerators), automatically vir-
tualizes user-mode accelerator APIs rather than accelerator
hardware; embracing silos, instead of attempting to break
them.

To reduce the cost of construction and maintenance, AvA
automatically generates a custom API remoting stack from

an API specification. To manage runtime overheads, AvA
interposes the relatively coarse-grained public API, where
most calls are infrequent and perform a significant amount
of work. AvA uses hypervisor-mediated transport allowing
the hypervisor to monitor and control all device accesses
and collaborate with the CPU scheduler to improve sched-
uling decisions. AvA incentivizes vendor use of hypervisor-
interposable infrastructure by offering push-button virtual-
ization support at zero engineering cost.
The input API specification includes both the C header

and documentation for the API. The documentation is re-
quired because C function declarations provide no semantic
information about functions or arguments. The AvA proto-
type uses argument types to infer semantic information, and
requires the programmer to verify its results. For example,
in the API shown in Figure 4, the const qualifier implies
a read-only buffer. The specification can also include a re-
source usage policy and a scheduling configuration for the
accelerators. We envision AvA will be able to leverage natu-
ral language processing to extract semantic information from
the documentation and comments for API definitions [38, 48–
50]: e.g. how to compute the size of a buffer argument from
the rest of the arguments of a function.

From the specification,AvA generates API-specific compo-
nents of the API remoting and interposition stack: a shared
library and kernel module for use in the guest, an API com-
mand routing module for the hypervisor, and an API server
to execute the invoked APIs in the host. For the kernel and
hypervisor modules, AvA could also generate assertions and
theorems which can be automatically checked to verify that
the generated C code is free from specific classes of bugs. The
compiled and verified code is then packaged for installation
in the guest and host.
In the near term, automatically inferring a complete and

correct specification is infeasible, because complex API se-
mantics can not be expressed in the programming languages
commonly used to build these APIs. E.g., clEnqueueRead-
Buffer is synchronous in some cases and asynchronous in
others, however, this is never specified formally and only
described in the documentation. Therefore, AvA implements
a rich declarative API specification language. AvA generates
a preliminary specification from the C header file, which the
developer refines. Generating assertions and theorems for
verification is a key question for future research.

The key research question for AvA is what level of au-
tomation can it provide?We believe that, given only a header
file and documentation to analyze, AvA can generate an API
stack for most functions where the buffer sizes are com-
putable directly from the arguments. Documentation anal-
ysis can be replaced with developer provided annotations
describing the conventions used in that header (e.g. “the size
parameter for every pointer argument has the same name
with _size appended”). This simple usage will provide vir-
tualization, but will not enforce any scheduling or resource

3

HotOS’19, May 2019, Bertinoro, Italy H. Yu, A. M. Peters, A. Akshintala and C. J. Rossbach

API header

CAVA

Developer

Router

Specification

Guidance
Refined Spec.

API Server

Guestlib

Figure 2. The AvA developer workflow. Rounded boxes represent
operations, squared boxes represent input and output data.

utilization constraints beyond command rate-limiting. How-
ever, a developer can further refine the specification to enable
the more advanced capabilities of AvA.
AvA relies on the process isolation provided by the run-

time libraries, drivers, or hardware to protect one guest from
another. Because AvA interposes a remoting transport layer,
its knowledge of the underlying device is intentionally lim-
ited. Our hypothesis is that this interposition point is suffi-
cient to enable practical best-effort isolation guarantees.

4 Design
AvA consists of an API stack generator, called CAvA, and
an API-agnostic runtime used by the generated API stack.
CAvA accepts an API specification as input and generates
code to para-virtualize that API (see section 4.2). The API
specification directly references the original API (e.g. cl.h)
and only provides additional information required by AvA.
The API agnostic runtime integrates the CAvA generated
components into a complete API stack.
Figure 2 shows the development workflow to support a

new API with AvA. First, CAvA creates a preliminary API
specification from the unmodified header file. Then, the pro-
grammer refines the specification with guidance from CAvA,
only providing information thatCAvA cannot infer. Once the
developer is satisfied with the API specification, she invokes
CAvA to generate code for the API-specific components of
the API para-virtualization stack. She compiles the generated
code using standard tools and auto-generated build scripts.
Finally, the developer uses auto-generated scripts to inte-
grate the generated components with the API-independent
components and deploy them.

4.1 Components
AvA comprises a handful of components many of which
implement internal functionality of AvA, for example AvA’s
invocation router contains a rate-limiter to enforce sharing
policies across VMs. These internal components are separate
and can be deployed in different execution contexts (e.g.,
the hypervisor or an appliance VM), which enables AvA to
support a range of configurations and policies with differ-
ent communication transports and system architectures. The

Router

Guestlib API ServerVM

Hypervisor
Accelerator

Silo
Kernel-mode

User-mode

Figure 3. The components of AvA. The accelerator silo is detailed
in Figure 1.

flexibility andmodularity enableAvA’s components to be dis-
tributed so as to support hardware resource disaggregation,
for example, AvA could be integrated with disaggregated
systems such as LegoOS [42].
Figure 3 shows the high-level design of AvA, which con-

sists of three components. The guest library intercepts the
API calls made by applications running in the guest VM and
marshals the arguments. The router verifies the forwarded
API calls for security and schedules them according to the
resource usage policies (see §4.3). The API server is a non-
privileged host process which executes the forwarded API
calls on behalf of the guest application. Process-level isola-
tion is required to isolate the applications’ device contexts.

4.2 Tools
CAvA generates an AvA API implementation from API dec-
larations and AvA-related annotations. The specification
provides references to the API’s native implementation, API
metadata, annotations on types, and annotations on specific
API functions. Simple functions do not need any function-
specific annotations.

Most function definitions can be directly translated to the
specification. Figure 4 shows an example from the OpenCL
specification. Line 1 specifies that the return value from
asynchronous calls returning the type cl_int is CL_SUCCESS.
Line 2 imports the unmodified OpenCL header. The rest of
Figure 4 provides function-specific annotations for clEnqueue
ReadBuffer. Line 9 specifies that it is synchronous when
blocking_read is true. Lines 10–13, provide annotations
for the parameters: ptr is an output buffer to be filled by
clEnqueueReadBuffer. event_wait_list is a inferred to be

1 type(cl_int) { success(CL_SUCCESS); }
2 #include <CL/cl.h>
3 cl_int clEnqueueReadBuffer(

4 cl_command_queue command_queue ,

5 cl_mem buf, cl_bool blocking_read ,

6 size_t offset, size_t size, void *ptr,
7 cl_uint num_events_in_wait_list ,

8 const cl_event *event_wait_list , cl_event *event) {
9 if(blocking_read == CL_TRUE) sync; else async;
10 parameter(ptr) { out; buffer(size); }
11 parameter(event_wait_list) {
12 buffer(num_events_in_wait_list); }
13 parameter(event) { out; element { allocates; } }
14 }

Figure 4. An example of the CAvA specification format.
4

Automatic Virtualization of Accelerators HotOS’19, May 2019, Bertinoro, Italy

an input buffer read by the function because it is a const
pointer. Finally, event is a single-element output bufferwhere
the element is freshly allocated. Opaque handles, like cl_mem,
are automatically detected by CAvA in many cases, but can
be explicitly specified when needed.

TheAvA specification language supports structures, nested
arrays, callbacks, and resource utilization annotations. All
follow the same basic pattern of declarative annotations in
the body of function specification.

API functions may be forwarded asynchronously regard-
less of whether the actual API function is asynchronous
when it is annotated to be asynchronous explicitly. For ex-
ample, clEnqueueReadBuffer has a non-blocking option
which is exposed to AvA by an explicit annotation. In ad-
dition, clSetKernelArg can be forwarded asynchronously
(even though it is synchronous in OpenCL) to reduce the
overhead of these calls. This allows AvA to return to the ap-
plication immediately after such a call is enqueued. Optimiza-
tions such as lazy RPC (by vCUDA [43]) and API batching
(by rCUDA [27]) will be applied to these API functions with
a certain degree of fidelity loss—transparently asynchronous
calls are only semantically correct when the call has no out-
put of any kind, meaning asynchronous calls cannot report
errors faithfully. In most cases, the error can be delivered
from a later API call, but this will not be faithful to a local
execution if originally synchronous calls were forwarded
asynchronously.

4.3 Resource Management
The router enforces various policies, e.g. rate limiting, at
the transport layer. As in previous API remoting systems,
the router schedules execution at function call granularity;
unlike previous systems, the router runs in the hypervisor
and can be federated with schedulers for other resources to
improve locality and performance. AvA scheduling relies
on resource usage approximations specified for API func-
tions. For example, the code may estimate the bus bandwidth
used by a data copy using the number of bytes copied. Some
approximations may be much less accurate: for instance,
estimating the device time of an OpenCL kernel execution
based on the work group sizes and elapsed wall-clock time.
However, we conjecture that these approximations will still
provide a useful level of performance isolation, and the hy-
pervisor can use the profiling interface of the API for more
precise measurements.
AvA supports VM migration by recording and replay-

ing a subset of API function calls and synthesizing oper-
ations to copy device memory content. Functions such as
global configuration (e.g., cuInit), object allocation or deal-
location (e.g., clCreateImage), and object modification (e.g.,
clCompileProgram) are annotated, so that AvA can select
APIs to be recorded (similar to Nooks object tracking [47])
during the normal execution and perform relevant actions

backprop
bfs gaussian

lavaMD
lud nw pathfinder

srad inception

0.0

0.5

1.0

R
el

at
iv

e
R

u
n
ti

m
e

1.11 1.13 1.16
1.04 1.04 1.07 1.05 1.04 1.01

Figure 5. End-to-end relative execution time of benchmarks (nor-
malized to native GPU or Movidius as appropriate). Inception is
Inception Net v3 ported to Movidius and the others are from Ro-
dinia.

during the replay. The API server or the guest library sus-
pends all invocations, synthesizes copies from all extant
device buffers to host memory, and frees all in-use device
resources. At this point, any migration technique can be
used to migrate the VM. Upon arrival, AvA replays the
recorded calls to reinitialize the device and reallocate all
the device objects, restores the device buffers, and resumes
the application’s normal execution. AvA avoids exposing
out-of-memory conditions to contending guest VMs by sup-
porting memory swapping at buffer object granularity, which
reduces overhead and driver modification relative to page-
or chunk-based management [32, 33, 55].

Our key proposition is that the API specification not only
annotates how the APIs are transferred, but also annotates
how the accelerator resources are managed and the infor-
mation of the objects’ dependencies, life time, and metadata.
AvA can then provide an administration interface to control
how much of each specified API resource (e.g., device time
or memory) each VM is allotted and how they should be
scheduled.

5 Preliminary Results
We have implemented a prototype and optimizations to para-
virtualize 39 commonly used OpenCL functions. In addition,
we para-virtualized the NCSDK MVNC APIs provided by the
Intel Movidius Neural Compute Stick (NCS) [14]. We found
that AvA reduced the difficulty in building a para-virtua-
lization system significantly: para-virtualizing the OpenCL
and NCSDK APIs from scratch took us mere developer-days.
We ran the Rodinia OpenCL benchmarks [24] and Incep-

tion Net v3 on the NVIDIA GTX 1080 GPU and Intel NCS,
respectively. Figure 5 shows that AvA’s para-virtualization
introduces at most 16% overhead (8% on average) to end-to-
end performance for the OpenCL benchmarks. The overhead
is about 1% for Inception Net v3 running on the Intel NCS.
We plan to use AvA to auto-virtualize other accelerator

APIs, including Intel QuickAssist [15] and BrainChip [5].
We also plan to extend AvA to support dynamic languages,
e.g. Python, allowing us to auto-virtualize TensorFlow [20]
running on the Google TPU. We are exploring other opti-
mization opportunities as well. For example, the specifica-
tion allows certain API functions to execute asynchronously.

5

HotOS’19, May 2019, Bertinoro, Italy H. Yu, A. M. Peters, A. Akshintala and C. J. Rossbach

This optimization improves efficiency by overlapping the
API execution with application execution, achieving an 8.6%
speedup compared to an unoptimized specification and a 5%
overhead compared to native in recent experiments.

6 Discussion
Do users really want virtual accelerators? Major cloud
computing providers support TPUs, GPUs, and FPGAs. Even
if a single-tenant-per-accelerator model is tolerable in the
near term, consolidation is the heart of cloud providers’
business model. Under-utilization is already a problem for
GPUs [19, 37, 39, 56]. As the ecosystem matures, the incen-
tive to increase profits will drive providers inevitably toward
virtualization and multi-tenancy for accelerators, whether
users want them or not.
Is API-remoting just a stop-gap until devices support
SR-IOV? We believe API-remoting will remain relevant
even as hardware vendors implement virtualization features.
There is a plausible future in which all server accelerators
support SR-IOV, enabling them to be exposed to guests using
PCIe pass-through. However, this vision relies heavily on
the hardware to implement all the resource management,
policy, and sharing features currently present in commodity
hypervisors. While not impossible, we believe this scenario
is unrealistic, as it puts a significant burden on accelerator
vendors who are not incentivized to implement such features.
More importantly, the vision runs counter to conventional
wisdom by baking complex resource management function-
ality into hardware.
Is hand-built API-remoting really so time-consuming
that automation is required? The authors’ experience
implementing OpenCL support in VMware’s SVGA2 virtual
GPU suggests that the answer is a resounding “yes”. Also
SVGA2 has only recently announced support for the DirectX
10.1 standard which came out in 2008. This demonstrates that
implementing an API remoting system for an accelerator is
not simply a matter of marshaling and sending function calls
to an API server. It requires implementing guest framework
libraries to replace vendor libraries that are “bug-for-bug”
compatible [52]. The server component must also manage
implicit accelerator state and arbitrate access. In addition, an
implementation which preserves interposition in the hypervi-
sor (e.g., SVGA2) requires guest device drivers andAPI-aware
communication and resource management in the hypervi-
sor. Even without hypervisor interposition, accelerator API
forwarding is challenging: Bitfusion, a startup focused on
API remoting for GPUs, has invested over a year of effort in
building remoting support for CUDA alone.
How does automatic generation of API remoting stacks
compensate lost compatibility? Along with cross-frame-
work compatibility, API remoting systems typically sacrifice
binary compatibility, as is true with all para-virtualization
systems: the guest OS must be modified to include binaries

provided by the virtualization framework (libraries, drivers,
etc.). Automation does not help with this loss form of com-
patibility. Instead, automation helps address the challenge
that is introduced by admitting binary modifications to guest
OSes: evolving modified guest libraries and drivers with the
changes to the API for each supported guest OS. By sepa-
rating para-virtual transport from API-specific components,
AvA enables automatic construction of these API-specific
components, thereby compensating for, rather than recover-
ing lost compatibility, ensuring the system can keep up with
rapid accelerator evolution.
How important is it to keep pace with APIs/standards?
While ecosystems for accelerators like CUDA GPUs are ma-
ture enough that keeping parity with the most recent version
may not be critical, we argue that for emerging accelerators
(e.g., TPUs) keeping pace with the rapid changes in APIs
and frameworks is critical for usability. In the past few years
alone, the number of startups focused on hardware accelera-
tion for AI alone is dizzying: GraphCore [12], Movidius [14],
Gyrfalcon [45], Cambricon [59], Habana [13] Cerebras [6],
Intel Nervana [16], multiple TPU variants from Google [11],
among others. If the hardware specialization continues, we
believe agility will become more and more important.
Doaccelerators provide enough isolation betweenusers?
Our experience with the AvA prototype is that the vast ma-
jority of accelerators support sufficient process-level iso-
lation. The only exception is the emerging Movidius [14]
platform. AvA relies on the accelerators memory isolation
features for accelerators with private memory, since this al-
lows guest state to remain in memory while other guests use
the accelerator. For accelerators that have minimal onboard
memory, AvA can time-share the entire device efficiently,
because little or no guest state need be evicted. Our experi-
ence is that while performance isolation in accelerators is
imperfect, it is sufficient to provide best-effort guarantees
similar to what many cloud VMs provide for more traditional
hardware like CPUs and memory. Minimizing interference
caused by sharing is an active research area [21, 22].

7 Conclusion
Accelerator stacks are silos, making virtualization techniques
that rely on clean separation between software layers unten-
able. We explore an alternative approach, AvA, which vir-
tualizes arbitrary device-centric APIs by automatically con-
structing interposable remoting infrastructure. AvA eases
the difficulty of building a para-virtualization system and
shortens the development cycle for virtualizing each new
accelerator.

Acknowledgments
We would like to thank the anonymous reviewers and SCEA
group members for their helpful feedback. This research was
supported the NSF grant 1618563.

6

Automatic Virtualization of Accelerators HotOS’19, May 2019, Bertinoro, Italy

References
[1] [n. d.]. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/

instance-types/f1. Accessed: 2018-04.
[2] [n. d.]. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types. Accessed: 2018-04.
[3] [n. d.]. AMD multiuser GPU. http://www.amd.com/Documents/

Multiuser-GPU-White-Paper.pdf. Accessed: 2018-07.
[4] [n. d.]. Bitfusion: The Elastic AI Infrastructure for Multi-Cloud. https:

//bitfusion.io/. April. 2019.
[5] [n. d.]. BrainChip Accelerator. https://www.brainchipinc.com/

products/brainchip-accelerator. Accessed: 2019-04.
[6] [n. d.]. Cerebras Systems. https://www.cerebras.net/. Accessed:

2019-04.
[7] [n. d.]. Five Reasons Machine Learning Is Moving to the Cloud. https:

//www.entrepreneur.com/article/300713. [Published Nov 3, 2017].
[8] [n. d.]. Genomics in the Cloud. https://aws.amazon.com/health/

genomics. Accessed: 2018-08.
[9] [n. d.]. Google Cloud GPU. https://cloud.google.com/gpu. Accessed:

2018-04.
[10] [n. d.]. Google Cloud Machine Learning Engine. https://cloud.google.

com/ml-engine. Accessed: 2018-04.
[11] [n. d.]. Google Cloud TPU. https://cloud.google.com/tpu. Accessed:

2019-01.
[12] [n. d.]. Graphcore Inc. https://www.graphcore.ai. Accessed: 2018-04.
[13] [n. d.]. Habana Labs. https://habana.ai/. Accessed: 2019-04.
[14] [n. d.]. Intel Movidius Myriad 2 VPU. https://www.movidius.com/

solutions/vision-processing-unit. Accessed: 2018-04.
[15] [n. d.]. Intel QuickAssist Technology. https://01.org/

intel-quickassist-technology. Accessed: 2019-04.
[16] [n. d.]. Nervana Neural Network Processor. https://ai.intel.com/

nervana-nnp. Accessed: 2019-01.
[17] [n. d.]. NVIDIA GPU Cloud. https://www.nvidia.com/en-us/gpu-cloud.

Accessed: 2018-04.
[18] [n. d.]. Olympus Cloud Services. https://olympustech.com.au/services/

cloud-services. Accessed: 2018-04.
[19] [n. d.]. Project Fiddle: Fast and Efficient Infrastructure for Distributed

Deep Learning. https://www.microsoft.com/en-us/research/project/
fiddle. Accessed: 2019-04.

[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning.. In OSDI, Vol. 16. 265–283.

[21] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J Rossbach, and Onur Mutlu. 2018.
Mosaic: Enabling Application-Transparent Support for Multiple Page
Sizes in Throughput Processors. ACM SIGOPS Operating Systems
Review 51, 1 (2018), 27–44.

[22] Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata
Ghose, Jayneel Gandhi, Adwait Jog, Christopher J Rossbach, and Onur
Mutlu. 2018. Mask: Redesigning the gpu memory hierarchy to support
multi-application concurrency. InACM SIGPLAN Notices, Vol. 53. ACM,
503–518.

[23] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. 2010. A package
for OpenCL based heterogeneous computing on clusters with many
GPU devices. In Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), 2010 IEEE International Conference on. 1–7. https:
//doi.org/10.1109/CLUSTERWKSP.2010.5613086

[24] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. InWorkload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. Ieee, 44–54.

[25] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, et al. 2018. Serving DNNs in Real Time
at Datacenter Scale with Project Brainwave. IEEE Micro 38, 2 (2018),
8–20.

[26] Micah Dowty and Jeremy Sugerman. 2009. GPU Virtualization on
VMware’s Hosted I/O Architecture. SIGOPS Oper. Syst. Rev. 43, 3 (July
2009), 73–82. https://doi.org/10.1145/1618525.1618534

[27] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernandez, Rafael
Mayo, and Enrique S. Quintana-Orti. 2011. Enabling CUDA accel-
eration within virtual machines using rCUDA. In Proceedings of the
2011 18th International Conference on High Performance Computing
(HIPC ’11). IEEE Computer Society, Washington, DC, USA, 1–10.
https://doi.org/10.1109/HiPC.2011.6152718

[28] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. 2010. A GPGPU
Transparent Virtualization Component for High Performance Com-
puting Clouds. Euro-Par 2010-Parallel Processing (2010), 379–391.

[29] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan
Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan.
2009. GViM: GPU-accelerated virtual machines. In Proceedings of the
3rd ACMWorkshop on System-level Virtualization for High Performance
Computing. ACM, 17–24.

[30] Alex Herrera. 2014. NVIDIA GRID: Graphics accelerated VDI with the
visual performance of a workstation. Nvidia Corp (2014).

[31] JAIN Jayant, Anirban Sengupta, Rick Lund, Raju Koganty, Xinhua
Hong, and Mohan Parthasarathy. 2018. Configuring and operating a
XaaS model in a datacenter. US Patent App. 10/129,077.

[32] Feng Ji, Heshan Lin, and Xiaosong Ma. 2013. RSVM: a region-based
software virtual memory for GPU. In Parallel Architectures and Compi-
lation Techniques (PACT), 2013 22nd International Conference on. IEEE,
269–278.

[33] Jens Kehne, Jonathan Metter, and Frank Bellosa. 2015. GPUswap:
Enabling oversubscription of GPU memory through transparent swap-
ping. In ACM SIGPLAN Notices, Vol. 50. ACM, 65–77.

[34] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. 2012. SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters. In Proceedings of the
26th ACM international conference on Supercomputing. ACM, 341–352.

[35] Patrick Kutch. 2011. PCI-SIG SR-IOV primer: An introduction to
SR-IOV technology. Intel application note (2011), 321211–002.

[36] Tyng-Yeu Liang and Yu-Wei Chang. 2011. GridCuda: A Grid-Enabled
CUDA Programming Toolkit. In Advanced Information Networking and
Applications (WAINA), 2011 IEEE Workshops of International Conference
on. 141–146. https://doi.org/10.1109/WAINA.2011.82

[37] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Mif-
takhutdinov, Onur Mutlu, and Yale N Patt. 2011. Improving GPU
performance via large warps and two-level warp scheduling. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 308–317.

[38] Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney, and
Milos Gligoric. 2018. Natural Language Processing and ProgramAnaly-
sis for Supporting Todo Comments as Software Evolves. In Proceedings
of the AAAI Workshop of Statistical Modeling of Natural Software Cor-
pora.

[39] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based
pipelined query processing engine. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. ACM, 1935–1950.

[40] Sébastien Pinneterre, Spyros Chiotakis, Michele Paolino, and Daniel
Raho. 2018. vFPGAmanager: A virtualization framework for orches-
trated FPGA accelerator sharing in 5G cloud environments. In 2018
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). IEEE, 1–5.

[41] C. Reano, A. J. Pena, F. Silla, J. Duato, R. Mayo, and E. S. Quintana-Orti.
2012. CU2rCU: Towards the complete rCUDA remote GPU virtual-
ization and sharing solution. 20th Annual International Conference on
High Performance Computing 0 (2012), 1–10. https://doi.org/10.1109/
HiPC.2012.65074857

https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
http://www.amd.com/Documents/Multiuser-GPU-White-Paper.pdf
http://www.amd.com/Documents/Multiuser-GPU-White-Paper.pdf
https://bitfusion.io/
https://bitfusion.io/
https://www.brainchipinc.com/products/brainchip-accelerator
https://www.brainchipinc.com/products/brainchip-accelerator
https://www.cerebras.net/
https://www.entrepreneur.com/article/300713
https://www.entrepreneur.com/article/300713
https://aws.amazon.com/health/genomics
https://aws.amazon.com/health/genomics
https://cloud.google.com/gpu
https://cloud.google.com/ml-engine
https://cloud.google.com/ml-engine
https://cloud.google.com/tpu
https://www.graphcore.ai
https://habana.ai/
https://www.movidius.com/solutions/vision-processing-unit
https://www.movidius.com/solutions/vision-processing-unit
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://ai.intel.com/nervana-nnp
https://ai.intel.com/nervana-nnp
https://www.nvidia.com/en-us/gpu-cloud
https://olympustech.com.au/services/cloud-services
https://olympustech.com.au/services/cloud-services
https://www.microsoft.com/en-us/research/project/fiddle
https://www.microsoft.com/en-us/research/project/fiddle
https://doi.org/10.1109/CLUSTERWKSP.2010.5613086
https://doi.org/10.1109/CLUSTERWKSP.2010.5613086
https://doi.org/10.1145/1618525.1618534
https://doi.org/10.1109/HiPC.2011.6152718
https://doi.org/10.1109/WAINA.2011.82
https://doi.org/10.1109/HiPC.2012.6507485
https://doi.org/10.1109/HiPC.2012.6507485

HotOS’19, May 2019, Bertinoro, Italy H. Yu, A. M. Peters, A. Akshintala and C. J. Rossbach

[42] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed {OS} for Hardware Resource
Disaggregation. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 69–87.

[43] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. 2012. vCUDA: GPU-
Accelerated High-Performance Computing in Virtual Machines. IEEE
Trans. Comput. 61, 6 (June 2012), 804–816. https://doi.org/10.1109/TC.
2011.112

[44] Jike Song, Zhiyuan Lv, and Kevin Tian. 2014. KVMGT: A full GPU
virtualization solution. In KVM Forum, Vol. 2014.

[45] Baohua Sun, Daniel Liu, Leo Yu, Jay Li, Helen Liu, Wenhan Zhang,
and Terry Torng. 2018. MRAM Co-designed Processing-in-Memory
CNN Accelerator for Mobile and IoT Applications. arXiv preprint
arXiv:1811.12179 (2018).

[46] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014.
GPUvm: Why not virtualizing GPUs at the hypervisor?. In USENIX
Annual Technical Conference. 109–120.

[47] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Im-
proving the Reliability of Commodity Operating Systems. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03). ACM, New York, NY, USA, 207–222. https:
//doi.org/10.1145/945445.945466

[48] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iCom-
ment: Bugs or bad comments?*/. In ACM SIGOPS Operating Systems
Review, Vol. 41. ACM, 145–158.

[49] Lin Tan, Ding Yuan, and Yuanyuan Zhou. 2007. Hotcomments: how
to make program comments more useful?. In HotOS.

[50] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: min-
ing annotations from comments and code to detect interrupt related
concurrency bugs. In Software Engineering (ICSE), 2011 33rd Interna-
tional Conference on. IEEE, 11–20.

[51] Kun Tian, Yaozu Dong, and David Cowperthwaite. 2014. A Full GPU
Virtualization Solution with Mediated Pass-through. In Proceedings of
the 2014 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 121–132.
http://dl.acm.org/citation.cfm?id=2643634.2643647

[52] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A Study of Modern Linux API Usage and Compatibility:
What to Support when You’Re Supporting. In ACM European Confer-
ence in Computer Systems (EuroSys). London, United Kingdom.

[53] Duy Viet Vu, Oliver Sander, Timo Sandmann, Steffen Baehr, Jan Hei-
delberger, and Juergen Becker. 2014. Enabling partial reconfiguration
for coprocessors in mixed criticality multicore systems using PCI Ex-
press Single-Root I/O Virtualization. In ReConFigurable Computing
and FPGAs (ReConFig), 2014 International Conference on. IEEE, 1–6.

[54] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. 2014. GPU Virtualiza-
tion for High Performance General Purpose Computing on the ESX
Hypervisor. In Proceedings of the High Performance Computing Sympo-
sium (HPC ’14). Society for Computer Simulation International, San
Diego, CA, USA, Article 2, 8 pages. http://dl.acm.org/citation.cfm?
id=2663510.2663512

[55] Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, and Xiaodong
Zhang. 2014. GDM: device memory management for GPGPU comput-
ing. ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014),
533–545.

[56] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2016. Simultaneous multikernel GPU: Multi-
tasking throughput processors via fine-grained sharing. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 358–369.

[57] Hangchen Yu and Christopher J Rossbach. 2017. Full Virtualization
for GPUs Reconsidered. In Proceedings of the Annual Workshop on
Duplicating, Deconstructing, and Debunking.

[58] Jose Fernando Zazo, Sergio Lopez-Buedo, Yury Audzevich, and An-
drewWMoore. 2015. A PCIe DMA engine to support the virtualization
of 40 Gbps FPGA-accelerated network appliances. In ReConFigurable
Computing and FPGAs (ReConFig), 2015 International Conference on.
IEEE, 1–6.

[59] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling
Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An
accelerator for sparse neural networks. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Press, 20.

8

https://doi.org/10.1109/TC.2011.112
https://doi.org/10.1109/TC.2011.112
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/945445.945466
http://dl.acm.org/citation.cfm?id=2643634.2643647
http://dl.acm.org/citation.cfm?id=2663510.2663512
http://dl.acm.org/citation.cfm?id=2663510.2663512

	Abstract
	1 Introduction
	2 Motivation
	3 Vision
	4 Design
	4.1 Components
	4.2 Tools
	4.3 Resource Management

	5 Preliminary Results
	6 Discussion
	7 Conclusion
	References

