
USETL: Unikernels for Serverless Extract Transform
and Load

Why should you settle for less?
Henrique Fingler

The University of Texas at Austin
hfingler@cs.utexas.edu

Amogh Akshintala
University of North Carolina at

Chapel Hill
aakshintala@cs.unc.edu

Christopher J. Rossbach
The University of Texas at Austin

VMware Research Group
rossbach@cs.utexas.edu

Abstract
Growing popularity of serverless functions is driving the
need to optimize the execution platform to reduce resource
usage and increase the number of functions that can be ex-
ecuted concurrently. This reduces the provider’s costs and
increases profit. While current serverless solutions use con-
tainers and/or virtual machines, we propose a unikernel
based design called USETL which is specialized for server-
less extract, transform, load (ETL) workloads. Our design
is motivated by a number of key observations: serverless
functions are stateless, ephemeral and event-driven. Further,
each function’s specific purpose is known at invocation time.
Unikernels are a natural fit for execution contexts with these
properties: they are minimal kernels packaged with a single
application in a single address space, which makes them
incredibly lightweight. Our design removes network and
storage components entirely, replacing them with high level
APIs tailored to the needs of serverless ETL functions. Virtu-
alizing I/O at the runtime library interface reduces memory
and CPU overheads, yielding higher consolidation density.

CCSConcepts • Security andprivacy→Virtualization
and security; • Software and its engineering→ Operat-
ing systems; • Computer systems organization→ Cloud
computing.

ACM Reference Format:
Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach.
2019. USETL: Unikernels for Serverless Extract Transform and Load
Why should you settle for less? . In 10th ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys ’19), August 19–20, 2019, Hangzhou,
China. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3343737.3343750

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343750

1 Introduction
Serverless functions - or Functions as a Service (FaaS) - were
among the fastest growing cloud services in 2018 [21]. The
appeal of serverless computing is clear: users are billed only
for function execution time and complex distributed sys-
tems problems such as elasticity and infrastructure man-
agement are relegated to the service provider. Most cloud
providers offer a serverless platform: e.g., AWS Lambda [4],
Google Functions [6], IBM Cloud Functions [7], and Azure
Functions [5] to name a few. Improving the generality and
efficiency of serverless infrastructure is an active area of
research [24, 25, 28, 32, 37, 42, 45].

Each cloud provider takes a different approach to guaran-
teeing elasticity, isolation, and performance in their server-
less platform. Unfortunately, none of these approaches are
optimal. Let us consider 2 examples: Google uses a sand-
boxed container runtime called gVisor [11] while AWS uses
a combination of virtual machines and containers [10]. gVi-
sor interposes system calls in the container, and translates
them into a limited set of system calls to the host [27]. The
host OS is therefore shared by mutually distrustful tenants,
which opens the door for a wide range of exploits. For exam-
ple, arbitrary host files could be overwritten [1], privileged
memory could be read and written by an unprivileged con-
tainer [16]. In some cases, this virtualization approach can
lead to a larger attack surface: for some applications, the num-
ber of unique system calls gVisor makes to the host is greater
than what a regular Docker runtime would make [13].
AWS, on the other hand, isolates each cloud tenant in

VMs. Functions are executed in containers inside these VMs.
Predictably, this scheme increases overhead: each VM has its
own kernel, increasing memory consumption, as cross-VM
page deduplication is rare, even when all the VMs are run-
ning the same OS [26]. The number of virtualization layers
that an application must cross also adds latency overhead.
Consider, for example, a function sending a network mes-
sage. The message must go through the container’s runtime
security policies (e.g. seccomp filters), traverse the guest ker-
nel network stack, be sent through a virtual device and be
relayed between the host’s kernel and user mode at least
once per message. If the network was set up using tap de-
vices, which is what KVM’s documentation [14] suggests

https://doi.org/10.1145/3343737.3343750
https://doi.org/10.1145/3343737.3343750
https://doi.org/10.1145/3343737.3343750

APSys ’19, August 19–20, 2019, Hangzhou, China H. Fingler, A. Akshintala, C. J. Rossbach

for public bridging, the message will go through the kernel
mode twice and through the user mode once before it is sent
to the external network. 1 Further, each VM has its own guest
OS scheduler, in addition to the host OS scheduler, leading to
well-known double scheduling pathologies [30, 43, 46, 48].

In order to get both the isolation guarantees of VMs and
the flexibility and agility of containers, we explore the use of
unikernels. Unikernels [38] consist of a minimal operating
system kernel and a single application packaged (or baked)
with it, in a single address space. Unikernels can typically
run on either bare-metal or on a hypervisor.
To efficiently support serverless functions, we propose

to specialize unikernels to serverless workloads, based on
the following observations: every serverless workload can
be reduced to one or more ETL functions (see § 3), and that
they are typically written in managed and/or interpreted
languages (around 91% of serverless functions are written
in python or node.js [20]). Extract, Transform and Load
(ETL) [31] is a design pattern that succinctly captures event-
driven execution, which is a typical use case for serverless
functions: data is extracted from a source, a sequence of
transformations are applied, and the result is stored (load).
Specializing for ETL-style workloads, allows the unikernel
to be more efficient than containers [39] while providing
stronger isolation guarantees. ETL workloads have limited
interaction with networking and storage, enabling optimiza-
tions that replace traditional but overly general network and
file system APIs with high level APIs designed for ETL. We
leverage the strong preference for managed and/or inter-
preted languages to reduce the time between invocation and
execution by maintaining a pool of unikernels that are ini-
tialized with the required runtime. With these optimizations,
a serverless platform based on unikernels and hypervisor
virtualization can reduce overheads further, enabling much
higher density and higher performance than current solu-
tions while maintaining similar isolation guarantees.

2 Background
Serverless providers must guarantee three properties:
Isolation: A function or user must not be able to access
data from other functions or users and must not be able to
impact (maliciously or otherwise) the resources allocated to
and used by others. AWS currently handles this with per-
user VMs, each of which runs one or more functions for
that user. Google’s gVisor relies on the host kernel to han-
dle memory management and scheduling for each function.
VMs are arguably more secure than containers [1, 16]: the
interface between the guest OS and the hardware (ABI) is
narrower and easier to secure than the OS API. The number
of vulnerabilities in the Linux kernel reported to the CVE

1The mode switches can be reduced by, for example, putting device emula-
tion in the kernel with vhost-net https://lwn.net/Articles/346267/

database [9] (170 just in 2018) far outstrips the number of
vulnerabilities found in hypervisors (4 for KVM in 2018).
Elasticity: Resource allocation should dynamically adapt to
varying workload requirements. This is typically realized by
automatically balancing load across providers’ data centers.
For example, on AWS Lambda, a user initially has no VMs.
When a function is invoked, a pre-created idle VM is assigned
to the user; subsequent function invocations are executed in
that VM or cause another idle VM to be assigned to the user
for execution. As functions finish, VMs are reclaimed and
destroyed [47].
Startup Latency: The delay between when a function
is invoked and when its execution starts (response time)
should be as short as possible. The worst response time case
occurs in the event of a cold start: the user has no execution
environment setup and/or the function is not cached and
needs to be initialized. Choice of programming language
impacts cold start. For example, the warm and cold start
time for a python 2.7 AWS Lambda function are 169ms and
over a second [47], respectively. The ExCamera [28] authors
observed worst-case cold start time of over a minute when
over 2000 functions were rapidly invoked.

3 Unikernels for Serverless
Unikernels comprise aminimal operating system and a single
application, making them a natural fit for serverless func-
tions [33]. By using unikernels, we eliminate redundant vir-
tualization layers relative to containers within VMs, and
avoid double scheduling and redundant memory consump-
tion. Due to the unikernel’s small footprint, the number of
functions a server can execute concurrently (function den-
sity) is increased. Unikernels operate in a single address
space, which implicitly avoids the costly overhead of mode
switches [44].

Before a serverless function can be run, the client provides
the service provider with function code and its dependencies.
At this point, if the provider uses unikernels, they can bake
the function codewith theminimal OS and store the resulting
unikernel.When the function is invoked, the service provider
spins up a copy of the unikernel on a hypervisor.
Although a unikernel is relatively small, booting one re-

quires unavoidable work because the virtual machine must
be created. Virtual CPUs and network devices must be config-
ured, memory must be reserved, and block devices must be
mounted. While creating and booting a VM takes over a sec-
ond (without any optimizations), this step can be moved off
the critical path by creating the VMs beforehand, yielding a
pool of unikernels ready to run. We analyze function startup
time for both creating on-demand and using a pre-created
environment in Section 4.
Pre-creating a pool of all registered (possibly millions of

different) functions would not be feasible due to memory

USETL: Unikernels for Serverless Extract Transform and Load APSys ’19, August 19–20, 2019, Hangzhou, China

(a) Container in VM (b) Unikernel (c) USETL

Figure 1. Comparison of virtualization stack to provide
serverless functions of current technique and unikernels.

and CPU constraints. This is a further challenge for elas-
ticity — multiple instances of a function might need to run
concurrently.

Over 96% of applications using serverless functions in 2018
were written in managed/interpreted languages like node.js,
Python and Java [20]. We use this information to specialize
our unikernels at the runtime level. The idea is to bake a
minimal OS with the required runtime, and have it listen on
a communication channel for the function to execute. When
the host wants to execute a function, it loads the function
at a specific guest address and signals the unikernel. For
simplicity, we focus on Python in the rest of the paper, but
our approach could be applied to any managed/interpreted
language. We call this unikernel baked with an interpreter a
USF (unikernel for serverless functions). When a function
finishes, the USF that housed it does not need to be destroyed.
Instead, the hypervisor can restore it to a checkpoint of
its initial ready state, while making sure all residual data
touched by the function is erased. This process resembles
the snapshot-rollback mechanism in LwC [36], and is cheaper
and far less complex than restoring a full VM. The hypervisor
restores the initial image of the unikernel in a fixed memory
range, while the rest is zeroed out. Moreover, as we discuss
in greater detail later, the unikernel initially has no network
state and storage is ephemeral, so they are simply discarded.

Specializing unikernels at the runtime layer and recycling
are simple optimizations that make unikernels more suitable
for serverless functions. In the following subsections, we
propose more radical changes. First, we leverage the fact
that the service provider controls the entire virtualization
stack (Figure 1), from the hypervisor to the runtime, enabling
them to optimize across layers. By construction, the user is
completely unaware of where and how the function is being
executed.We take advantage of this to place the Python inter-
preter closer to the hypervisor and redesign networking and
storage by modifying the interface between the unikernel
and the hypervisor.

Figure 2. Guest networking through para-virtualized de-
vices on the guest. The guest and hypervisor communicate
through shared ring buffers, the hypervisor sends packets
through a tap device to the kernel for handling.

3.1 Specializing for ETL
Serverless functions typically follow a common pattern: In-
put data to the serverless function comes from parameters or
remote storage (e.g. retrieved through HTTP GET requests).
After performing arbitrary computation on this input data,
the function sends results back to the caller or stores it in
remote storage (through HTTP POST requests). This is a
subset of the Extract, Transform and Load (ETL) [31] de-
sign pattern: data is extracted from a source, a sequence of
transformations are applied, and the result is stored (load).
ETL-style workloads make up the majority of use case

of serverless functions (at the time writing, all six use case
examples on AWS Lambda’s homepage are ETL). Further,
all serverless workloads can be transformed to ETL due to
the generality of the pattern. USETL does not limit functions
to follow the ETL sequence strictly; functions can have any
order of actions. USETL’s I/O optimizations are guided by
characteristics of ETL workloads.

3.2 Network Devices
Network virtualization in most hypervisors — like KVM
— is complex. Consider a guest application trying to send
data to the outside world. The usermode application in the
guest originates the request, which is then processed by the
network stack in the guest kernel. The guest kernel network
stack drives an emulated or para-virtualized network device.
This usually results in a vmexit. The host kernel traps this
request, and passes the request to the hypervisor, which then
pipes the data into a tap device 2 so it can finally be sent
out by the host kernel. Figure 2 shows a common way of
setting up guest networking, where the guest and hypervisor
communicate through shared memory. This is how a guest
using virtio para-virtualized devices provides networking.
Figure 3 shows how I/O requests reach the hypervisor from
the guest in KVM, including the mentioned mode switches.
2A tap device is a virtual network interface (NIC) in which one end is
attached to the kernel, similar to a regular physical NIC, while the other
end is attached to a user level application. All traffic is still managed by a
single kernel.

APSys ’19, August 19–20, 2019, Hangzhou, China H. Fingler, A. Akshintala, C. J. Rossbach

Figure 3. KVM introduces a new mode called guest. When
the guest performs I/O, the kernel traps its execution and han-
dles the request in the hypervisor. If it’s a network request
it could possibly be handed back to the kernel through a tap
device. Based on a figure of the KVM documentation [12].

Unikernels implicitly remove the guest user to guest kernel
mode switch [35] as they operate in guest kernel mode at
all times. The guest kernel to host kernel mode switch can’t
be eliminated completely but can be made infrequent by
batching, i.e., by only notifying (kicking, in virtio terms) the
host kernel after a certain number of packets have been
enqueued or after a certain time has passed. The host kernel
to host user space mode switch can be eliminated by moving
the device emulation into the host’s kernel [23]. Both the
host kernel to host user mode switch and the later host
user to host kernel switch can be bypassed by using user
level networking like DPDK [2] or SR-IOV passthrough [8].
Reducing mode switches is important in high performance
applications and in high-density multi-tenant computing
platforms (our case) because these overheads can add up
and impact total effective CPU utilization [44]. Receiving
network packets in the guest is simpler: when the host kernel
gets a packet addressed to a guest, it is written to a tap
device, received by the hypervisor on the other end of it and
written to the guest’s virtual network device. One of these
twomode switches can be eliminated by moving the network
entirely to either the kernel or to the user level hypervisor.
These optimizations help but do not remove fundamental
inefficiencies.

3.2.1 A different approach
Instead of optimizing the network execution flow, we pro-
pose something more radical: remove network devices en-
tirely from USFs and instead use a higher level API between
the unikernel and the host. By making the host handle net-
working on behalf of the USF , one entire network stack is
skipped, vmexits are no longer proportional to the number
of packets sent by the USF , and tap devices (a significant
source of mode switches) are no longer necessary.

This idea works because of two characteristics of server-
less workloads. First, serverless functions are not addressable:
the function has to initiate all connections. Second, ETL-style
functions do not need general networking capabilities. All
that is necessary are operations similar to HTTP GET and
POST (see § 3.1): GET takes the url of the resource/file to be
fetched, while POST takes the destination url and a file. On
a GET request, the host fetches the data on the USF ’s behalf,
shares the content through memory and notifies the USF of
the data’s location. On a POST request, the host sends data
from the specified (memory) location of the file to be sent
out, to the provided url. In both cases the files’ contents are
in memory; as we will discuss in the next subsection, USETL
only uses an in-memory file system.

On the host side, we have two choices to handle network
API requests: interrupts (vmexits) or polling [3, 34]. Although
the best approach is ultimately workload dependent, we use
interrupts because polling typically wastes CPU cycles. We
expect that the number of interrupts will be small because the
API operates at file granularity, instead of packet granularity
like in a traditional network stack. Host CPU time spent
handling API on behalf of function can be billed to the tenant.

Applications which use a centralized entity to manage and
assign batch work (e.g. ExCamera [28] and Sprocket [25])
can easily be modified to fit this model. Instead of a function
connecting to a monitor to retrieve input data, the monitor
can invoke the function with a url to the data as a parame-
ter. When the function begins executing, it loads data from
that url through the GET API. If function is synchronous,
the API gateway that handles invocation requests can act
as an intermediary, receiving the result from the function
and forwarding the result to the invoker when the function
finishes.
Replacing networking with this API breaks backwards

compatibilitywith existing general Python source code. How-
ever, the goal of serverless functions is not to execute arbi-
trary applications out of the box, but to provide elasticity
and other features in exchange for adaptations to the FaaS
model. Further, there is a strong incentive to use the new API:
functions that finish sooner cost less. The service provider
could also offer unikernels with an unmodified runtime to
provide backwards compatibility with existing serverless
functions.

3.3 Storage and File System
Serverless functions are stateless by design: an event triggers
the creation of a function, with optional parameters, on an
arbitrary computing node. The function executes a short
task and terminates. The orchestration system destroys or
recycles the execution context, and reclaims all resources
allocated to the function. When state is unavoidable it must
be stored and retrieved from remote storage. Functions are
typically short-lived, and have ephemeral and limited lo-
cal storage: AWS Lambda limits function execution to 15

USETL: Unikernels for Serverless Extract Transform and Load APSys ’19, August 19–20, 2019, Hangzhou, China

minutes and provisions each function with only 512MB of
temporary storage.
Consequently, the storage subsystem in a USF can be

greatly simplified: most of the guarantees and features (e.g.,
journaling, crash recovery, sharing, access control, etc.) pro-
vided by a full-fledged file system like ext4 [41] are not only
unnecessary, but also contradictory.

With large and cheap non-volatile memory (NVM) devices
with memory-like characteristics on the horizon, we hypoth-
esize that service providers will stop providing ‘persistent’
storage to serverless functions. Functions will operate only
on memory. AWS Lambda providing environments with a
small fixed amount of ephemeral storage but with up to 3GB
of memory indicates that memory-only storage is already
here.

Simple object storage can instead be provided through the
network API. GET and POST can be used to read and write
urls backed by host files. Where necessary, more complex
storage can be provided by an ephemeral in-memory file
systemwith a POSIX interface, to support legacy applications
and libraries. The shared memory used by the file system
is split into two regions, each with its own offset table: one
for files created by the USF and one for files created by the
host. Separating the file system into two areas ensures that
each only has a single producer, removing the necessity for
complex mutual exclusion mechanisms. Further, this design
maps cleanly into the network API: when the USF requests
a non-local file, the host downloads the content of the url
directly into the host region of the file system and then maps
the file readable to the USF . When the USF wishes to perform
a write, it writes the data into it’s region of the shared in-
memory file system, and provides the filename to the POST
request. The host locates the file offset and then sends the
data directly to the destination url. If a USF tries to modify
a file in the host’s region, a copy-on-write mechanism is
triggered, copying the file to the USF ’s region.

By removing the traditional storage stack from the uniker-
nel image, we reduce the USF ’s memory footprint and the
amount of CPU time spent per I/O operation.

3.4 General Optimizations
With networking and storage redesigned, we focus now on
issues on the host and related to Python. One of them is
Python module management: different applications may re-
quire different Python modules/versions and we want to
avoid having to install them when a function is being in-
voked. Another problem is that if all USFs allocate and have
their own data without sharing, memory will be wasted due
to duplication.

We solve module dependency in a simple way: each server-
less host keeps the default Pythonmodules (22MB for Python
3.7) and the most commonly used external Python modules
in memory (highly skewed, 36% of imports are for just 20
packages, 0.02% of the PyPI repository [42]). Since the each

Figure 4. Rump kernels make it possible to pick and choose
components of NetBSD (an anykernel), form kernels with a
particular interface and attach an application to produce a
rumprun unikernel [17] that can run on bare-metal or on a
hypervisor.

function’s dependencies are explicitly indicated when a func-
tion is deployed, each host can maintain a per-user module
directory, which contains links to a central module directory
to avoid duplication. When a function is assigned to a USF ,
the host shares the dependencies with that USF through the
in-memory file system.
Because all unikernels are running the same application

- the Python interpreter - we can deduplicate non-private
regions of memory to reduce usage, consequently enabling a
higher function density. An existing mechanism like kernel
same-pagemerging (KSM) 3 , which scans regions of memory
marked as deduplication candidates andmerges/ shares them
to save memory usage could be used, but there are problems:
the kernel has to keep scanning pages to find similar ones,
potentially wasting CPU cycles. We avoid scanning pages
by noting that the hypervisor has complete knowledge of
sections that are duplicated when it is creating the USFs. The
final goal is to make all running unikernels with a particular
runtime share the same text and code sections, which would
greatly reduce TLB overhead, while each has its own data
sections.

4 Preliminary Evaluation
For preliminary evaluation, we used a modified rumprun
unikernel [19], which is based on rump kernels [18, 29]
(Figure 4). The rumprun unikernel is customizable and has
a large repository of common applications, among them,
Python. Other available unikernels are Mirage [38], OSv [15],
ClickOS [40] and UKL [22], each with its own different goals
and languages supported.
As a preliminary method to measure the improvement

from changing the unikernel’s network stack to an API, we
measured the time taken to download 2, 8, 64 and 256MB
files in the following settings: in a unikernel with hard drive
backed storage, and on the host to both hard drive and
3Kernel same-page merging: https://www.kernel.org/doc/html/latest/
admin-guide/mm/ksm.html

https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html

APSys ’19, August 19–20, 2019, Hangzhou, China H. Fingler, A. Akshintala, C. J. Rossbach

2MB 8MB 64MB 256MB
0

2

4

6

8

0.1
2 0.3

3

2.0
7

6.7
6

0.0
8

0.1
3 0.6

0

2.2
1

0.0
1

0.0
3 0.1

6 0.5
6

File Size

S
ec
o
n
d
s

Unikernel
Host
USETL

Figure 5. Elapsed time in seconds to download a file in the
unikernel versus downloading on the host.

memory-backed storage. The memory backed storage case
approximates USETL. To avoid external network interfer-
ence, we set up a simple HTTP server on the same machine,
which served all experiments without change, and repeated
every test 30 times. Figure 5 shows the mean and standard
deviation of elapsed time. The data shows that the extra layer
of virtualization and network stack affects the elapsed time
substantially, and that moving networking from the uniker-
nel to the host can be beneficial; also, as expected, mapping
the incoming file directly to a filesystem in memory is much
faster than using a local disk.
In order to substantiate our claim regarding the need to

remove the creation of the environment from the critical
path, we also measured cold start time in the following en-
vironments: a plain Ubuntu 16.04 VM, a container and a
unikernel. We measured actual cold start time by creating
the the environment when the function was invoked; and
warm-start time (labeled pooled), where the environment
was pre-created and was listening on a socket for the server-
less function to execute. The function in question is trivial:
it merely connects to the host and then terminates. We mea-
sured the time elapsed between when the host launched
the function and when it received the connection from the
function, averaged over 30 runs. Figure 6 shows that while it
takes longer to create a VM than to create a unikernel due to
size, creating a unikernel is slower than creating a container
(the container is just a process after all). However, in all cases,
environment creation takes too long to be feasible on the
critical function invocation’s path. For pooled environments,
all three have environments showed similar times since the
runtime is pre-created and just listens on a socket. Minor
variations observed were likely due to network set up.

To analyze memory usage, we called the smem linux tool
from a python script that simply loops forever. A Docker
container process uses 28.7MB and the unikernel plus hy-
pervisor uses 54.1MB of unique (non-shared) memory; the
unikernel reports a total usage of 10.3MB during boot, ex-
cluding virtio buffers. We believe that most of this 10.3MB

VM
Cr

eat
e

Unik
ern

el
Cr

eat
e

Co
nta

ine
r Cr

eat
e

Unik
ern

el
Po

ol

Co
nta

ine
r Po

ol

VM
Po

ol

11,765

3,156

1,521

96 39 19

M
il
li
se
co
n
d
s

Figure 6. Cold start time for a simple connect and quit func-
tion under different environments. Create refers to when the
environment was created on demand, while pool refers to
the setup when the environment was pre-created and had a
runtime listening for requests. USETL uses unikernel pools.

used by a unikernel can be shared by many USFs, leaving
the rest of the memory to per-function allocation.
Although disk space is not a concern, we report it for

completeness: the unikernel with python elf file has a size
of 11MB (aligning with the memory usage reported during
boot). Stripping symbols from the python interpreter brought
this down to 6.5MB. The kernel consumes 4.5MB. The script
itself is 112 B, but it’s passed to the unikernel as a 352 kB
iso image. The container’s size consists of just the script
itself (112 B) plus 922MB shareable among different python
containers.

5 Conclusion
Unikernels provide the same isolation guarantees as running
a container within a VM while using less resources, and
can be optimized for serverless functions by replacing the
general I/O interface with a ETL-specific API interface. Since
all unikernels that run a language interpreter like python
are interchangeable, they can be pre-created and pooled.
Further, common memory regions can be deduplicated, and
only function specific memory needs to be private. With
these modifications, per-function CPU and memory usage
is reduced on the host, thereby increasing the number of
functions that can be executed concurrently, translating to
lower operating costs for the service provider.

6 Acknowledgments
We thank the anonymous reviewers and SCEA group mem-
bers for their feedback. This research was partially supported
by the NSF (CNS-1618563).

References
[1] [n. d.]. 1631: gVisor runsc guest->host breakout via filesystem cache

desync. https://bugs.chromium.org/p/project-zero/issues/detail?id=
1631. Accessed: 2019-03-25.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1631
https://bugs.chromium.org/p/project-zero/issues/detail?id=1631

USETL: Unikernels for Serverless Extract Transform and Load APSys ’19, August 19–20, 2019, Hangzhou, China

[2] [n. d.]. 43. Vhost Library - Dataplane Development Kit. https://doc.
dpdk.org/guides-18.08/prog_guide/vhost_lib.html Accessed: 2019-03-
01.

[3] [n. d.]. abelg/virtual_io_acceleration: Virtual I/O acceleration tech-
nologies for KVM. https://github.com/abelg/virtual_io_acceleration.
Accessed: 2019-03-10.

[4] [n. d.]. AWS Lambda - Serverless Compute. https://aws.amazon.com/
lambda/. Accessed: 2019-03-10.

[5] [n. d.]. Azure Functions - Serverless Architecture. https://azure.
microsoft.com/en-us/services/functions/. Accessed: 2019-03-10.

[6] [n. d.]. Cloud Functions - Event-driven Serverless Computing. https:
//cloud.google.com/functions/. Accessed: 2019-03-10.

[7] [n. d.]. Cloud Functions - Overview. https://www.ibm.com/cloud/
functions. Accessed: 2019-03-10.

[8] [n. d.]. Configure SR-IOV Network Virtual Functions
in Linux KVM. https://software.intel.com/en-us/articles/
configure-sr-iov-network-virtual-functions-in-linux-kvm. Ac-
cessed: 2019-04-24.

[9] [n. d.]. CVE security vulnerability database. https://www.cvedetails.
com/product/47/Linux-Linux-Kernel.html?vendor_id=33. Accessed:
2019-03-05.

[10] [n. d.]. Firecracker - Lightweight Virtualization for
Serverless Computing. https://aws.amazon.com/blogs/aws/
firecracker-lightweight-virtualization-for-serverless-computing/.
Accessed: 2019-01-28.

[11] [n. d.]. google/gvisor: Container Runtime Sandbox. https://github.
com/google/gvisor. Accessed: 2019-03-25.

[12] [n. d.]. kvm: the Linux Virtual Machine Monitor. https://www.kernel.
org/doc/ols/2007/ols2007v1-pages-225-230.pdf. Accessed: 2019-05-03.

[13] [n. d.]. Measuring the Horizontal Attack Profile of
Nabla Containers. https://blog.hansenpartnership.com/
measuring-the-horizontal-attack-profile-of-nabla-containers/.
Accessed: 2019-03-25.

[14] [n. d.]. Networking — KVM. https://www.linux-kvm.org/page/
Networking. Accessed: 2019-07-15.

[15] [n. d.]. OSv - the operating system designed for the cloud. http://osv.io/.
Accessed: 2019-02-27.

[16] [n. d.]. Privilege Escalation in gVisor, Google’s Container Sandbox.
https://justi.cz/security/2018/11/14/gvisor-lpe.html. Accessed: 2019-
03-25.

[17] [n. d.]. Repo rumpkernel/wiki Wiki. https://github.com/rumpkernel/
wiki/wiki/Repo. Accessed: 2019-03-05.

[18] [n. d.]. Rump Kernels. http://rumpkernel.org/. Accessed: 2019-03-05.
[19] [n. d.]. rumpkernel/rumprun: The Rumprun unikernel and toolchain

for various platforms. https://github.com/rumpkernel/rumprun. Ac-
cessed: 2019-03-05.

[20] [n. d.]. Serverless by the number: 2018 report. https://serverless.
com/blog/serverless-by-the-numbers-2018-data-report/. Accessed:
2019-02-27.

[21] [n. d.]. State of the Cloud Report. https://www.rightscale.com/lp/
state-of-the-cloud. Accessed: 2019-01-28.

[22] [n. d.]. UKL: A Unikernel Based on Linux - now + next. https://next.
redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/. Accessed:
2019-02-27.

[23] [n. d.]. vhost_net: a kernel-level virtio server. https://lwn.net/Articles/
346267/. Accessed: 2019-04-24.

[24] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 923–935. https://www.usenix.org/conference/atc18/
presentation/akkus

[25] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
2018. Sprocket: A Serverless Video Processing Framework. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad,
CA, USA, October 11-13, 2018. 263–274. https://doi.org/10.1145/3267809.
3267815

[26] Sean Barker, Timothy Wood, Prashant Shenoy, and Ramesh Sitaraman.
2012. An Empirical Study of Memory Sharing in Virtual Machines.
In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). USENIX, Boston, MA, 273–284. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/barker

[27] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An
Operating System Architecture for Application-level Resource Man-
agement. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM, New York, NY, USA, 251–266.
https://doi.org/10.1145/224056.224076

[28] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 363–
376. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/fouladi

[29] Antti Kantee and Justin Cormack. 2014. Rump Kernels: No OS? No
Problem! ;login: 39, 5 (2014). https://www.usenix.org/publications/
login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem

[30] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2018. Scaling
Guest OS Critical Sections with eCS. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 159–
172. https://www.usenix.org/conference/atc18/presentation/kashyap

[31] Ralph Kimball, Laura Reeves, Warren Thornthwaite, Margy Ross, and
Warren Thornwaite. 1998. The Data Warehouse Lifecycle Toolkit: Expert
Methods for Designing, Developing and Deploying DataWarehouses with
CD Rom (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[32] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 427–444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

[33] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Domi-
nance of Linux in the Cloud?. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS ’17). ACM, New York, NY, USA,
169–173. https://doi.org/10.1145/3102980.3103008

[34] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel
Gordon, and Dan Tsafrir. 2016. Paravirtual Remote I/O. In Proceedings
of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). ACM,
New York, NY, USA, 49–65. https://doi.org/10.1145/2872362.2872378

[35] Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.
2015. Reducing World Switches in Virtualized Environment with Flex-
ible Cross-world Calls. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY,
USA, 375–387. https://doi.org/10.1145/2749469.2750406

[36] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 49–64. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/litton

[37] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie.
2015. Jitsu: Just-In-Time Summoning of Unikernels. In 12th USENIX

https://doc.dpdk.org/guides-18.08/prog_guide/vhost_lib.html
https://doc.dpdk.org/guides-18.08/prog_guide/vhost_lib.html
https://github.com/abelg/virtual_io_acceleration
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://software.intel.com/en-us/articles/configure-sr-iov-network-virtual-functions-in-linux-kvm
https://software.intel.com/en-us/articles/configure-sr-iov-network-virtual-functions-in-linux-kvm
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://www.linux-kvm.org/page/Networking
https://www.linux-kvm.org/page/Networking
http://osv.io/
https://justi.cz/security/2018/11/14/gvisor-lpe.html
https://github.com/rumpkernel/wiki/wiki/Repo
https://github.com/rumpkernel/wiki/wiki/Repo
http://rumpkernel.org/
https://github.com/rumpkernel/rumprun
https://serverless.com/blog/serverless-by-the-numbers-2018-data-report/
https://serverless.com/blog/serverless-by-the-numbers-2018-data-report/
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/
https://lwn.net/Articles/346267/
https://lwn.net/Articles/346267/
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker
https://doi.org/10.1145/224056.224076
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/2872362.2872378
https://doi.org/10.1145/2749469.2750406
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton

APSys ’19, August 19–20, 2019, Hangzhou, China H. Fingler, A. Akshintala, C. J. Rossbach

Symposium on Networked Systems Design and Implementation (NSDI 15).
USENIX Association, Oakland, CA, 559–573. https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/madhavapeddy

[38] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 461–472. https:
//doi.org/10.1145/2451116.2451167

[39] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) Than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM,
New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.3132763

[40] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. 2013.
Enabling Fast, Dynamic Network Processing with clickOS. In Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13). ACM, New York, NY, USA, 67–72.
https://doi.org/10.1145/2491185.2491195

[41] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium,
Vol. 2. 21–33.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 57–70. https://www.usenix.org/conference/
atc18/presentation/oakes

[43] Diego Ongaro, Alan L. Cox, and Scott Rixner. 2008. Scheduling I/O
in Virtual Machine Monitors. In Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE ’08). ACM, New York, NY, USA, 1–10. https://doi.org/10.
1145/1346256.1346258

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Ar-
rakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). USENIX Association, Broomfield, CO, 1–16. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/peter

[45] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[46] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. 2013. Schedule
Processes, Not VCPUs. In Proceedings of the 4th Asia-Pacific Workshop
on Systems (APSys ’13). ACM, New York, NY, USA, Article 1, 7 pages.
https://doi.org/10.1145/2500727.2500736

[47] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 133–146. https://www.usenix.org/
conference/atc18/presentation/wang-liang

[48] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu. 2009. The
Hybrid Scheduling Framework for Virtual Machine Systems. In Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE ’09). ACM, New York, NY, USA,
111–120. https://doi.org/10.1145/1508293.1508309

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/2491185.2491195
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/1346256.1346258
https://doi.org/10.1145/1346256.1346258
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/2500727.2500736
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/1508293.1508309

	Abstract
	1 Introduction
	2 Background
	3 Unikernels for Serverless
	3.1 Specializing for ETL
	3.2 Network Devices
	3.3 Storage and File System
	3.4 General Optimizations

	4 Preliminary Evaluation
	5 Conclusion
	6 Acknowledgments
	References

